Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng bao nhiêu ?
(A) \(60^0\)
(B) \(120^0\)
(C) \(240^0\)
(D) Không tính được
Hãy chọn phương án đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn phương án (B)
Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng \(45^0\)
\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
(B) 120o
Chọn phương án (B)
Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)