a) rút gọn B
b)cho P=\(\frac{B}{A}\)Tìm x để P<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ne2\); \(x\ne-2\)
a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)
b) - Để A > 0 thì x - 1 > 0 => x > 1
- Để A < 0 thì x - 1 < 0 => x < 1
c) Để | A | = 5 thì | x-1 | = 5
+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình
x - 1 = 5 => x = 6 ( thỏa mãn )
+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình :
-x + 1 = 5 < = > -x = 4 <=> x = -4 ( thỏa mãn )
Vậy tập nghiệm của phương trình là S = { -4 ; 6 }
a) Điều kiện xác định của phân thức A là x#+-5
\(A=\frac{2\left(x+15\right)}{x^2-25}-\frac{x+3}{x+5}+\frac{x}{x-5}
\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{x+3}{x+5}+\frac{x}{x-5}\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+3\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{x\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-\left(x^2-5x+3x-15\right)+x^2+5x}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-x^2+5x+3x-15+x^2+5x}{\left(x+5\right)\left(x-5\right)}=\frac{15x+15}{\left(x+5\right)\left(x-5\right)}=\frac{15\left(x+1\right)}{\left(x+5\right)\left(x-5\right)}\)
tick đúng nha, ý b tí mình giải nhé
ĐKXĐ : \(x\ne\pm1\)
a) \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(A=\left[\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-\frac{x\left(1-x\right)}{1-x}\right]:\frac{\left(1-x\right)\left(x+1\right)}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+x+1\right)-x\left(1-x\right)}{1-x}\cdot\frac{\left(1-x\right)\left(1-x^2\right)}{\left(1-x\right)\left(x+1\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+x+1-x\right)}{1-x}\cdot\frac{\left(1-x\right)\left(1-x\right)\left(x+1\right)}{\left(1-x\right)\left(x+1\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+1\right)\left(1-x\right)}{1-x}\)
\(A=\left(1-x\right)\left(x^2+1\right)\)
b) Để A < 0 thì \(1-x\)và \(x^2+1\)trái dấu
Mà \(x^2+1>0\forall x\)
Vậy để A < 0 thì \(1-x< 0\Leftrightarrow x>1\)
Vậy....
a) ta có: A=\(\frac{\left(1-x\right)+x^2\left(1-x\right)}{1-x}:\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}=\left(x^2+1\right)\cdot\left(1-x\right)=1-x^3\)
b) Để A<0 <=> x^3>1 <=>x>1
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
a)
\(B=\frac{x+3}{x-9}+\frac{2}{\sqrt{x}-3}-\frac{1}{3-\sqrt{x}}\)
\(\Leftrightarrow\frac{x+3}{x-9}+\frac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\frac{x+3+2\sqrt{x}+6+\sqrt{x}+3}{x-9}\)
\(\Leftrightarrow\frac{3\sqrt{x}+x+14}{x-9}\)
cái ngôn ngữ j zậy ta ? =_=