K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

\(A=\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\\ 4A=5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\\ 4A-A=\left(5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\right)-\left(\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\right)\\ 3A=5-\dfrac{5}{4^{99}}\\ A=\left(5-\dfrac{5}{4^{99}}\right):3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}}:3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}\cdot3}< \dfrac{5}{3}\)

Vậy \(A< \dfrac{5}{3}\)

23 tháng 11 2021

Answer:

\(A=4+4^2+4^3+4^4+...+4^{99}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{96}+4^{97}\right)+\left(4^{98}+4^{99}\right)\)

\(=1\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{95}\left(4+4^2\right)+4^{97}\left(4+4^2\right)\)

\(=1.20+4^2.20+...+4^{95}.20+4^{97}.20\)

\(=20.\left(1+4^2+...+4^{95}+4^{97}\right)\)

\(=5.4\left(1+4^2+...+4^{95}+4^{97}\right)⋮5\)

\(\Rightarrow A⋮5\)

8 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

6 tháng 4 2017

a, ta xét:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.....

\(\frac{99}{100}< \frac{100}{101}\)

=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

hay:A<B(đpcm)

b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)

\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)

c,vì A<B (theo phần a)

=>A.A<B.A

Mà B.A=\(\frac{1}{101}\)

=>A2<101

Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)

=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)

Hay A<\(\frac{1}{10}\)

20 tháng 12 2015

A=4+4^2+...+4^99+4^100

=(4+4^2)+...+(4^99+4^100)

=4(1+4)+...+4^99(1+4)

=(1+4)(4+...+4^99)

=5(4+...+4^99) chia hết cho 5

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần