K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

nốt cái naỳ thui nha

 

19 tháng 8 2021

X={0,1,2,3,4,5,6,7,8,9}

X={5,6,7,8,9}

x={7,8}

Chọn B

NV
22 tháng 4 2022

\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)

\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)

\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)

\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)

\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)

19 tháng 4 2022

:D?

19 tháng 4 2022

đề đâu

26 tháng 6 2023

a) \(A=\left\{22;23;24;25\right\}\)

b) \(B=\left\{0;1;2;3\right\}\)

c) \(C=\left\{14;16;18;20;22;24\right\}\)

d) \(D=\left\{1;3\right\}\)

\(M\left(x\right)+N\left(x\right)=4x^4+5x^3-6x^2-3\)

\(M\left(x\right)-N\left(x\right)=-2x^4+5x^3+4x^2+2x+2\)

6 tháng 5 2020

lỗi j ạ

\n\n

\n

a: \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)

=>6x-3+4x-12=16x-8-6x-7

=>10x-15=10x-15(luôn đúng)

b: =>(x+3)(4-x)-(x+3)2=0

=>(x+3)(4-x-x-3)=0

=>(x+3)(-2x+1)=0

=>x=-3 hoặc x=1/2

d: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)

\(\Leftrightarrow x^3-1-\left(x-2\right)\left(x^2+x+1\right)+2x^2-5=4x-4\)

\(\Leftrightarrow x^3-1-\left(x-1-1\right)\left(x^2+x+1\right)+2x^2-4x-1=0\)

\(\Leftrightarrow x^3+2x^2-4x-2-\left[x^3-1-\left(x^2+x+1\right)\right]=0\)

\(\Leftrightarrow x^3+2x^2-4x-2-x^3+1+x^2+x+1=0\)

\(\Leftrightarrow3x^2-3x=0\)

=>3x(x-1)=0

=>x=1(loại) hoặc x=0(nhận)

1 tháng 7 2018

Bài 1 :

a) \(x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\)

\(=\left(x^3-x\right)-\left(x^3+x^2-x-1\right)\)

\(=x^3-x-x^3-x^2+x+1\)

\(=1-x^2\)

b) \(\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\)

\(=\left(x^2-x+2\right)-\left(2x^2+3x-2\right)+\left(2x^2-2x\right)\)

\(=x^2-x+2-2x^3-3x+2+2x^3+2x\)

\(=x^2-2x+4\)

\(=\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)

c) \(\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\)

\(=\left(x^3+4x^2+3x-2\right)-\left(2x^2-x-1\right)\)

\(=x^3+4x^2+3x-2-2x^3+x+1\)

\(=-x^3+4x^2+4x-1\)

1 tháng 7 2018

Bài 1

\(a)x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\\ =\left(x+1\right)\left[x\left(x-1\right)-\left(x^2-1\right)\right]\\ =\left(1+x\right)\left(x^2-x-x^2+1\right)\\ =\left(1+x\right)\left(1-x\right)\\ =1-x^2\)

\(b)\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\\ =x^2-2x+x-2-\left(2x^2+4x-x-2\right)+2x^2-2x\\ =x^2-2x+x-2-(2x^2+3x-2)+2x^2-2x\\ =x^2-2x+x-2-2x^2-3x+2+2x^2-2x\\ =x^2-6x\)

\(c)\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2+x-2x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2-x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-2x^2+x+1\\ =x^3+2x^2+4x-1\)