{x ∈ N / x < 10} … A;
{x ∈ N/ 4 < x ≤ 9} … A;A … {x ∈ N/ 6 < x < 9}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
a) \(A=\left\{22;23;24;25\right\}\)
b) \(B=\left\{0;1;2;3\right\}\)
c) \(C=\left\{14;16;18;20;22;24\right\}\)
d) \(D=\left\{1;3\right\}\)
\(M\left(x\right)+N\left(x\right)=4x^4+5x^3-6x^2-3\)
\(M\left(x\right)-N\left(x\right)=-2x^4+5x^3+4x^2+2x+2\)
a: \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
=>6x-3+4x-12=16x-8-6x-7
=>10x-15=10x-15(luôn đúng)
b: =>(x+3)(4-x)-(x+3)2=0
=>(x+3)(4-x-x-3)=0
=>(x+3)(-2x+1)=0
=>x=-3 hoặc x=1/2
d: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
\(\Leftrightarrow x^3-1-\left(x-2\right)\left(x^2+x+1\right)+2x^2-5=4x-4\)
\(\Leftrightarrow x^3-1-\left(x-1-1\right)\left(x^2+x+1\right)+2x^2-4x-1=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-\left[x^3-1-\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-x^3+1+x^2+x+1=0\)
\(\Leftrightarrow3x^2-3x=0\)
=>3x(x-1)=0
=>x=1(loại) hoặc x=0(nhận)
Bài 1 :
a) \(x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\)
\(=\left(x^3-x\right)-\left(x^3+x^2-x-1\right)\)
\(=x^3-x-x^3-x^2+x+1\)
\(=1-x^2\)
b) \(\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\)
\(=\left(x^2-x+2\right)-\left(2x^2+3x-2\right)+\left(2x^2-2x\right)\)
\(=x^2-x+2-2x^3-3x+2+2x^3+2x\)
\(=x^2-2x+4\)
\(=\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
c) \(\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\)
\(=\left(x^3+4x^2+3x-2\right)-\left(2x^2-x-1\right)\)
\(=x^3+4x^2+3x-2-2x^3+x+1\)
\(=-x^3+4x^2+4x-1\)
Bài 1
\(a)x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\\ =\left(x+1\right)\left[x\left(x-1\right)-\left(x^2-1\right)\right]\\ =\left(1+x\right)\left(x^2-x-x^2+1\right)\\ =\left(1+x\right)\left(1-x\right)\\ =1-x^2\)
\(b)\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\\ =x^2-2x+x-2-\left(2x^2+4x-x-2\right)+2x^2-2x\\ =x^2-2x+x-2-(2x^2+3x-2)+2x^2-2x\\ =x^2-2x+x-2-2x^2-3x+2+2x^2-2x\\ =x^2-6x\)
\(c)\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2+x-2x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2-x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-2x^2+x+1\\ =x^3+2x^2+4x-1\)
nốt cái naỳ thui nha
X={0,1,2,3,4,5,6,7,8,9}
X={5,6,7,8,9}
x={7,8}