K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)

hay \(AB=\dfrac{4}{5}BC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)

19 tháng 8 2021

Ta có:     \(AC=AD+DC\)

         ⇔  \(AC=4+5\)

         ⇔  \(AC=9\) ( cm )

Áp dụng hệ thức lượng giác vào △ ABC, ta có: 

\(AB^2=AD.AC\)  ⇔  \(AB^2=4.9=36\)   ⇔   \(AB=6\)  ( cm )

Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

⇔   \(BC^2=6^2+9^2\)

⇔   \(BC^2=117\)

⇒     \(BC=\sqrt{117}=3\sqrt{13}\)

27 tháng 1 2021

Ta có

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)

\(\Rightarrow AB=\frac{3.BC}{5}\)

Ta có

\(BC^2=AB^2+AC^2\) (pitago)

\(\Rightarrow BC^2=\left(\frac{3.BC}{5}\right)^2+\left(AD+DC\right)^2\)

\(\Rightarrow BC^2=\frac{9.BC^2}{25}+64\Rightarrow16.BC^2=1600\Rightarrow BC^2=100\Rightarrow BC=10cm\)

\(AB=\frac{3.BC}{5}=\frac{3.10}{5}=6cm\)

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

14 tháng 12 2021

Ta có: AD+DC=AC(D nằm giữa A và C)

nên AC=4+5=9(cm)

Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC 
ta lại có BC=3+4=7 cm 
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2

=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5

Ta có: AD+DC=AC(D nằm giữa A và C)

nên AC=4+5=9(cm)

 

29 tháng 3 2021

\(AC=AD+DC=4+5=9\)

Ta có: \(AC^2=BC^2-AB^2\)

\(\to BC^2-AB^2=81\)

\(BD\) là đường phân giác \(\widehat{B}\)

\(\to\dfrac{BA}{AD}=\dfrac{BC}{DC}\)

\(\to\dfrac{BA}{4}=\dfrac{BC}{5}\)

\(\to\dfrac{BA^2}{16}=\dfrac{BC^2}{25}=\dfrac{BC^2-BA^2}{25-16}=\dfrac{81}{9}=9\)

\(\to\begin{cases}BA^2=144\\BC^2=225\end{cases}\)

\(\to\begin{cases}BA=12\\BC=15\end{cases}\)

Vậy \(BA=12cm, Bc=15cm\)

18 tháng 1 2021

huhugianroihuhu

18 tháng 1 2021

khocroi

 

a:

Sửa đề tam giác DEC

Xet ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC

b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)

=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)