K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Xét hai tam giác vuông ABH và CAH có:

∠ ABH = ∠ CAH (cùng phụ với góc  ∠ BAH)

Do đó △ ABH đồng dạng  △ CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ A H 2  = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

16 tháng 9 2019

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

6 tháng 8 2019

Theo chứng minh trên, ta có:

DM = MH = 1/2 BH = 1/2.4 = 2(cm)

EN = NH = 1/2 CH = 1/2.9 = 4,5(cm)

DE = AH = 6(cm)

DENM là hình thang vuông, do đó diện tích của nó là:

S D E N M  = 1/2(DM + EN)DE = 1/2.(2+4,5).6 = 19,5( c m 2 ).

8 tháng 10 2019

Vì ADHE là hình chữ nhật nên OD = OH

Suy ra, tam giác ODH cân tại O ⇒ ∠ ODH =  ∠ OHD

Mà Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác MBD có:

∠ (MDB) =  ∠ (MBD) (vì cùng phụ với hai góc bằng nhau  ∠ (MDH) =  ∠ (MHD))

Suy ra, tam giác MBD cân tại M, do đó MD = MB (2)

Từ (1) và (2) suy ra, MB = MH

Vậy M là trung điểm của BH

Tương tự, ta cũng có N là trung điểm của CH.

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

15 tháng 1 2017

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.