Chứng minh rằng, nếu hai tam giác ABC và A'B'C' đồng dạng với nhau thì :
a) Tỉ số của hai đường phân giác tương ứng bằng tỉ số đồng dạng
b) Tỉ số của hai trung tuyến tương ứng bằng tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ΔA’B’C’ ΔABC theo tỉ số k
Gọi D, D’ lần lượt là trung điểm BC và B’C’
⇒ ΔA’B’D’ ΔABD theo tỉ số k.
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
3
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)
Gọi AD và A'D' lần lượt là phân giác của tam giác ABC tại góc BAC và tam giác A'B'C' tại góc B'A'C'
tam giác ABC ~ tam giác A'B'C' => góc BAC = góc B'A'C'
=> góc BAD = 1/2 góc BAC = 1/2 góc B'A'C' = góc B'A'D' (AD và A'D' là phân giác)
Xét tam giác ABD và tam giác A'B'D' có :
1. góc ABD = góc A'B'D' ( do tam giác ABC ~ tam giác A'B'C' )
2. góc BAD = góc B'A'D' ( cmt )
Vậy tam giác ABD ~ tam giác A'B'D' (g-g)
=> AD/A'D' = AB/A'B' = k
CMTT cho phân giác 2 góc còn lại ta cũng có điều cần chứng minh.
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
( Bạn tự kẻ hình nhé!!! )
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'
Tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k nên:
\(\widehat{B'}=\widehat{B}\), \(\widehat{A'}=\widehat{A}\), \(\frac{A'B'}{AB}=k\)
Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
\(\widehat{B'A'D'}=\frac{1}{2}\widehat{B'A'C'}\), \(\widehat{BAD}=\frac{1}{2}\widehat{BAC}\)
\(\Rightarrow\widehat{B'A'D'}=\widehat{BAD}\)
Xét tam giác A'B'D' và tam giác ABD:
\(\widehat{B'}=\widehat{B}\)
\(\widehat{B'A'D'}=\widehat{BAD}\)
\(\Rightarrow\)tam giác A'B'D' đồng dạng với tam giác ABD
\(\Rightarrow\frac{A'D'}{AD}=\frac{A'B'}{AB}=k\)
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.