Phân tích đa thức thành nhân tử
1.(x-3)^4+(x-1)^4-16
2.x^3.(x^2-7)^2-36x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+x-2=3x^2-2x+3x-2=x\left(3x-2\right)+\left(3x-2\right)=\left(x+1\right)\left(3x-2\right)\)
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^2+2xy-15y^2=x^2-3xy+5xy-15y^2=x\left(x-3y\right)+5y\left(x-3y\right)=\left(x+5y\right)\left(x-3y\right)\)
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
a) \(x^3\left(x^2-7\right)^2-36x=x\left[\left(x^3-7x\right)^2-6^2\right]\)
\(=x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)
\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)
\(=\left(x-3\right)\left(x-2\right)\left(x-1\right).x.\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Không pt được.
c) Không pt được.
Lời giải:
\(x^3(x^2-7)^2-36x=x[x^2(x^2-7)^2-36]\\
=x[(x^3-7x)^2-6^2]=x(x^3-7x-6)(x^3-7x+6)\\
=x[x^2(x-3)+3x(x-3)+2(x-3)][x^2(x-2)+2x(x-2)-3(x-2)]\\
=x(x-3)(x^2+3x+2)(x-2)(x^2+2x-3)\\
=x(x-3)(x+1)(x+2)(x-2)(x-1)(x+3)\)
Ta có: \(1+6x-6x^2-x^3\)
\(=-x^3-6x^2+6x+1\)
\(=\left(-x^3+1\right)-6x\left(x-1\right)\)
\(=-\left(x-1\right)\left(x^2+x+1\right)-6x\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(-x^2-x-1-6x\right)\)
\(=-\left(x-1\right)\left(x^2+7x+1\right)\)
1) \(x^2-4xy+4y^2+xz-2yz\)
\(=\left(x^2-4xy+4y^2\right)+\left(xz-2yz\right)\)
\(=\left(x-2y\right)^2+z\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-2y+z\right)\)
2) \(\left(x-y\right)^3+\left(x+y\right)^3\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)
\(=\left(x-y+x+y\right)\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)