Cho phương trình
(2x+m) (x-1)-2x^2+2m-2=0 ( x là ẩn, m là hằng số cho trước)
Tìm các giá trị của m để phương trinh có nghiệm là một số không âm.
Help me! Tớ cần gấp! Thank you very much!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)
\(\Leftrightarrow-2x+2mx-m-2=0\)
\(\Leftrightarrow2x\left(m-1\right)=m+2\)
\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)
Để phương trình có nghiệm là 1 số không âm thì:
\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow m>1\) hay \(m\le-2\).
-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.
a: Khi x=2 thì pt sẽ là 2^2-2(m-1)*2-2m-1=0
=>4-2m-1-4(m-1)=0
=>-2m+3-4m+4=0
=>-6m+7=0
=>m=7/6
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)
\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)
TH1: \(m\ge3\)
PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)
\(\Leftrightarrow2m^2+6m-12=0\)
Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\)
\(\Rightarrow2m^2+6m-12>0\)
=>Pt vô nghiệm
TH2: \(m< 3\)
PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)
\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)
\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)
Vậy...
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)
Khi đó:
$2x_1^3+(m+2)x_2^2=5$
$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$
$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$
\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)
\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)
\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)
Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.
\(2x^2+2\left(2m-6\right)x-6m+52=0\)
\(\Delta=4\left(2m-6\right)^2+2.\left(6m-52\right)=4.\left(4m^2-2m+36\right)+12m-104=16m^2-8m+144+12m-104=16m^2+4m+40>0\)
Vậy pt luôn có nghiệm hữu tỉ
Đáp án:
a) Thay m=3
x² - 2(3-1)x + 3² -6=0
⇔ x² - 4x + 3=0
⇔ x² -3x -x + 3 = 0
⇔ x(x-3) - (x-3) = 0
⇔(x-3) (x-1) =0
⇒ x-3 = 0 hoặc x-1 =0
⇒ x= 3 hoặc x= 1
b) Ta có Δ'= (m-1)² - m² + 6 = m² -2m + 1 - m² + 6 = -2m + 7
Để pt có 2 nghiệm thì Δ' ≥ 0 hay -2m + 7≥ 0
⇒ m ≤ 3,5
Áp dụng hệ thức vi ét cho pt trên ta có
x1x1 + x2x2 = 2(m-1)
x1x1 x2x2 = m2m2 -6
Ta có x21x12 + x22x22 = 16
⇔ x21x12 + x22x22 + 2x1x1 x2x2 = 16 + 2 x1x1 x2x2
⇔(x1+x2)2x1+x2)2 = 16 + 2 x1x1 x2x2
Thay vào ta đc
4 (m-1)² = 16 + 2 (m² - 6)
⇔4 ( m² - 2m + 1) = 16 + 2m² -12
⇔ 4m² - 8m + 4 = 16 + 2m² -12
⇔ 2m² -8m =0
⇔ m² - 4m = 0
⇔ m( m-4) =0
⇒ m=0 hoặc m-4 = 0
⇒m=0 (TM) hoặc m=4 (KTM)
Vậy m =0
Chắc bạn nhầm đề bài rồi bạn nhé, dù sao mình cũng cảm ơn bạn!
(2x+m)(x-1)-2x2+2m-2=0
<=>2x2-2x2+mx-2x-m+2m-2=0
<=>x(m-2)+m-2=0
<=>(m-2)x=-(m-2)
*)Với m=2=>0x=0(thõa mãn với mọi x)
*)Với m khác 2=>x=-1
Vậy m=2 thì phương trình có nghiệm là 1 số không âm
Mình nghĩ có nhiều giá trị mà.
Mình làm ra rồi, ra kết quả là 1<m\(\le\)2 cơ