K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

\(2\left|2x-\frac{5}{7}\right|-1\ge-1\)

Dấu ''='' xảy ra khi \(x=\frac{5}{7}:2=\frac{5}{14}\)

Vậy GTNN của biểu thức trên bằng -1 tại x = 5/14

19 tháng 8 2021

\(2.\left|2x-\frac{5}{7}\right|-1\ge-1\)

dấu "=" xảy ra khi và chỉ khi \(2x-\frac{5}{7}=0< =>x=\frac{5}{14}\)

vậy \(MIN=-1\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

19 tháng 8 2021

\(2\left|2x-\frac{5}{7}\right|-1\)

Vì \(2\left|2x-\frac{5}{7}\right|\ge0\forall x\)

\(\Rightarrow2\left|2x-\frac{5}{7}\right|-1\ge-1\forall x\)

Vậy  \(2\left|2x-\frac{5}{7}\right|-1\) đạt giá trị nhỏ nhất là \(-1\Leftrightarrow2x-\frac{5}{7}=0\Leftrightarrow2x=\frac{5}{7}\Leftrightarrow x=\frac{5}{14}\)

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

6 tháng 3 2021

/2x-7/>=0
/2x-6/>=0
/2x-5/>=0
suy ra /2x-7/+/2x-6/+/2x-5/>=0 
đề nó =0 thì 2x-7=0 hoặc 2x-6=0 hoặc 2x-5=0
x thuộc 7/2;3;5/2
vậy để c nhỏ nhất =0 khi và chỉ khi x thuộc những gt trên

6 tháng 3 2021

\(C=|7-2x|+|2x-6|+|2x-5|\ge7-2x+2x-5+0=2\text{ vì: }|a|\ge0\text{ và:}|a|\ge a\)

Vậy giá trị nhỏ nhất của biếu thức là: 2. Dấu bằng xảy ra khi: 2x-6=0 hay: x=3 thử lại đúng

30 tháng 9 2021

Em ko bik

\(G=\left|7-x\right|+\left|2x-1\right|+\left|x+5\right|\)

\(\Rightarrow G=\left|7-x\right|+\left|2x-1\right|+\left|-x-5\right|\)

\(\Rightarrow G=\left|7-x\right|+\left|2x-1\right|+\left|-x-5\right|\ge\left|7-x+2x-1-x-5\right|\)

\(\Rightarrow G\ge\left|1\right|=1\)

Còn phần tìm Gt của x tự làm