K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)

\(\Rightarrow\dfrac{B}{2}=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\)

\(\Rightarrow\dfrac{B}{2}-B=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)

\(\Leftrightarrow-\dfrac{B}{2}=\dfrac{1}{2^{2017}}-\dfrac{1}{2}\)

\(\Rightarrow B=1-\dfrac{1}{2^{2016}}< 1\)

27 tháng 3 2017

Mk nghĩ là thê này nè , k biêt co đung k:

Ta co \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\) (1)

\(.......\)

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Từ (1) \(=>B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

\(=>B< 1\left(đpcm\right)\)

tick cho mk nha

27 tháng 3 2017

thank you nhé !

Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)

\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)

=>A là số hữu tỉ (ĐPCM)

28 tháng 2 2017

(a - b)2 \(\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+b^2\ge2ab\)

=> \(\frac{1}{a^2+b^2}< \frac{1}{2ab}\left(a;b>0;a\ne b\right)\)

Áp dụng vào bài toán ta có:

\(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+\frac{1}{3^2+4^2}+...+\frac{1}{2016^2+2017^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

\(< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(< \frac{1}{2}\left(1-\frac{1}{2017}\right)< \frac{1}{2}\left(đpcm\right)\)

28 tháng 10 2017

bạn chứng minh bài toán tổng quát :  \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)rồi áp dụng vào giải bài này nhé 

9 tháng 8 2017

P\(=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+.....+\dfrac{4033}{\left(2016.2017\right)^2}\) \(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+.......+\dfrac{4033}{2016^2.2017^2}\) \(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+....+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\) =1\(-\dfrac{1}{2017^2}\) Do `1\(-\dfrac{1}{2017^2}\) <1\(\Rightarrow\) P<1 ( ĐPCM)

8 tháng 5 2018

P = \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+\dfrac{7}{\left(3.4\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

P = \(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

P = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)

P = \(1-\dfrac{1}{2017^2}\)

⇒ P < 1

⇒ ĐPCM

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)