Câu b, c ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=cos^212+sin^2\left(90-78\right)+cos^21+sin^2\left(90-89\right)\)
\(=cos^212+sin^212+cos^21+sin^21=1+1=2\)
\(C=sin^23+sin^215+cos^2\left(90-75\right)+cos^2\left(90-87\right)\)
\(=sin^23+cos^23+sin^215+cos^215=1+1=2\)
\(E=\dfrac{tan64}{cot26}-1=\dfrac{tan64}{tan\left(90-26\right)}-1=\dfrac{tan64}{tan64}-1=1-1=0\)
cj phải nắm dc bản chất của pu hh thì bài nào làm cx dc
ở đây, cj nhìn vào sẽ thấy sau pư có giải phóng H2
NÊN ta có: kim loại + axit = muối + H2
từ suy nghĩ đó, cj tự tìm ra có bit bao nhiu pư,
vd: Cu + H2SO4 = CuSO4 + H2
a) Xét tam giác AKB và tam giác AKC có :
AB=AC(gt)
BK=CK(K la trung điểm BC)
AK chung
Suy ra: ΔAKB=ΔAKC(c.c.c)
Ta có: ΔAKB=ΔAKC(Cm trên)
Suy ra: góc AKB = góc AKC(2 góc tương ứng)
Mà góc AKB+góc AKC=180 độ(2 góc kề bù)
Suy ra:góc AKB= góc AKC=180 độ/2=90 độ
Suy ra:AK vuông góc BC
a)Xét tam giác AKB và tam giác AKC có :
AK là cạnh chung
AB=AC(gt)
BK=KC(K là trung điểm của BC)
=>Tam giác AKB=Tam giác AKC(c.g.c)
Ta có :
+ Góc AKB=Góc AKC (cmt)
Mà góc AKB + góc AKC=180o( 2 góc kề bù)
=> AKB=AKC=900
Vậy AK vuông góc BC
b: Xét ΔAHC vuông tại H có
\(AH^2+HC^2=AC^2\)
nên \(AC^2-HC^2=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AH^2=AN\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
) Ta có:
- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.
Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.
b) Ta có:
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.
Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.
Vậy AK // HM.
c) Ta có:
- AK // HM (theo b).
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.
- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.
Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.
Vậy HN // AM.
a)hai tam giac nay =nhau vi
+Góc B=Góc C(=45)
+BK=KC(do K trung diem)
+nên =nhau thợp cạnh góc vuông góc nhọn kề
mà BKA+AKC=180(kề bù)
và BKA=AKC(2 tam giác =nhau)
nên BKA=90
hay BK vuông AK
b)Tam giác ABC có AK trung tuyến ứng vs nửa cạnh huyền nên KA=KC=BK
Nên tg KAC cân ở K
nên góc KAC=KCA
mà KAC=45 (AK trung tuyến tg ABC vuông cân nên cũng là đường phân giác suy ra góc BAK=KAC)
Nên KCA=45
mặt khác KCA+ACE=90(doKC vuông EC)
suy ra ACE=45
xét ACE=KAC=45
mà 2 góc này so le
nên AK//CE
c)Tgiác BCE có BCE 90 nên là tg vuông
nên CBE+BEC=90
mà EBC=45(do tg ABC Vuông cân)
suy ra BEC=90
a: Ta có; ΔCAB vuông tại B
=>\(BA^2+BC^2=CA^2\)
=>\(CA^2=3^2+4^2=25\)
=>\(CA=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCBK vuông tại B và ΔCHK vuông tại H có
CK chung
\(\widehat{BCK}=\widehat{HCK}\)
Do đó: ΔCBK=ΔCHK
c: ta có: ΔCBK=ΔCHK
=>KB=KH
Xét ΔKBM vuông tại B và ΔKHA vuông tại H có
KB=KH
\(\widehat{BKM}=\widehat{HKA}\)(hai góc đối đỉnh)
Do đó: ΔKBM=ΔKHA
=>KM=KA