Cho x + y +xy = 8
Tìm GTNN của biểu thức : P = x2 + y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
a: \(=\left(x-y\right)\left(x+y\right)\)
\(=74\cdot100=7400\)
c: \(=\left(x+2\right)^3\)
\(=10^3=1000\)
a) \(=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) ta đc: \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10;y=-1\) ta đc:
\(10^3-\left(-1\right)^3=1000-1=999\)
c)\(=\left(x+2\right)^3\)
Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)
d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)
Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
Áp dụng BĐT côsi cho 2 số không âm:
x2+y2\(\ge\)2xy
<=>2x2+2y2\(\ge\)4xy
Dấu "=" xảy ra khi và chỉ khi x=y
x2+4\(\ge\)4x
Dấu "=" xảy ra khi và chỉ khi x=2
y2+4\(\ge\)4y
Dấu "=" xảy ra khi và chỉ khi y=2
=>3x2+3y2+8\(\ge\)4(x+y+xy)=4.8=32
=>P=x2+y2\(\ge\)8
=>Min P=8 xảy ra khi \(\left\{{}\begin{matrix}x=y\\y=2\\x=2\end{matrix}\right.\)<=>x=y=2
Vậy...
sao có tới 3 dấu = xảy ra phụ rồi mới tới cái dấu = xảy ra chính vậy anh?