K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(MH^2=HN\cdot HP\)

\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)

4 tháng 8 2021

Áp dụng hệ thức trong tam giác vuông:

`MH^2 =NH.PH`

`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`

`=> NP=NH+PH=5(cm)`

`=> S= 1/2 . MH .NP =6(cm^2)`

Xét ΔMHN vuông tại H có 

\(\sin N=\dfrac{MH}{MN}\)

nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

=>\(MP=16\left(cm\right)\)

\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)

9 tháng 9 2021

3\(\sqrt{5}\)

9 tháng 9 2021

con gi nua ko bi thieu de

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

25 tháng 9 2018

MH =  3 5 cm

25 tháng 3 2023

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)