K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

a

2 góc A, B bằng 120 độ

2 góc C, D bằng 60 độ

chứng minh 90 độ - góc BCA = 0 suy ra góc BCA = 30 độ

b) chỉ cân chứng minh AD = 1/2 BC

trong tam giác ACD vuông có 1 góc 30 độ, 1 góc 60 độ

nên góc đối diện với góc 30 độ bằng 1/2 cạnh huyền

i don't now

mong thông cảm !

...........................

9 tháng 10 2017

1) a) Do ABCD là hình thang cân => góc D = góc C ; góc B = góc A 

Trong t/g ABC có : góc A = 90 độ => góc D + góc C2 = 90 độ 

Trong t/g ABC có AB = BC ( gt ) => t/g ABC cân tại B => góc A1 = góc C1 

Ta có góc A = 90 độ + góc A1 = góc D + góc C2 + góc C1 = góc C + góc C = 2C 

Mà : 

A + B + C + D = 360 độ = 2A + 2C = 4C + 2C = 6C => góc C = 360 độ : 6 = 60 độ 

=> góc C = góc D ( = 60 độ ) ; góc A = góc B ( = 120 độ ) 

9 tháng 10 2017

mk ko biết

NV
14 tháng 7 2021

Kẻ đường cao góc AE \(\Rightarrow AE=AB\)

Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\) 

\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACD có:

\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)

\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)

\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)

NV
14 tháng 7 2021

undefined