Tính : \(\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{48.50}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{48.50}\)
= \(\dfrac{2}{2}.\left(\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+....+\dfrac{5}{48.50}\right)\)
\(\)\(=\dfrac{5}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+....+\dfrac{2}{48.50}\right)\)
\(=\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
=\(\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
=\(\dfrac{5}{2}.\dfrac{12}{25}\)
=\(\dfrac{6}{5}\)=\(1\dfrac{1}{5}\)
Nếu bạn không biết cách giải bài này có thể bảo mình viết cách giải giúp!!!
Chúc bạn làm tốt!!!
\(\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{48.50}\)
=\(\dfrac{5}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{48.50}\right)\)
=\(\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
=\(\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{48}\right)\)
=\(\dfrac{5}{2}.\dfrac{23}{48}\) = \(\dfrac{115}{96}\)