Cho hình thang vuông ABCD vuông tại A và D. Có hai đáy AB song song với CD. Gọi M là trung điểm của đoạn thẳng AD. Điểm P và Q thuộc BC sao cho BP= CQ . Cho biết rằng MQ vuông góc với DP. Chứng minh rằng MP vuông góc với AQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi N là trung điểm của CD.
Xét \(\Delta\)ABD: M là trung điểm AB; MH // AD; H thuộc BD => H là trung điểm BD
Ta có: OH vuông góc với MH tại H. Mà MH // AD nên OH vuông góc AD
Xét \(\Delta\)ABC: M là trung điểm AB; MK // BC; K thuộc AC => K là trung điểm AC
Lại có: OK vuông góc MK tại K; MK // BC => OK vuông góc BC
Xét \(\Delta\)BDC: H là trung điểm BD; N là trung điểm CD => HN là đường trung bình \(\Delta\)BDC
=> HN // BC. Mà OK vuông góc BC (cmt) => OK vuông góc HN.
Xét \(\Delta\)ADC: K là trung điểm AC; N là trung điểm CD => KN là đường trung bình \(\Delta\)ADC
=> KN // AD. Mà OH vuông góc AD (cmt) => OH vuôn góc KN
Xét \(\Delta\)HNK: OK vuông góc HN; OH vuông góc KN (cmt) => O là trực tâm của \(\Delta\)HNK
=> NO vuông góc KH. Mà HK // DC (Dễ chứng minh) => NO vuông góc DC
Xét \(\Delta\)DOC: ON vuông góc DC (cmt); N là trung điểm DC => \(\Delta\)DOC cân tại O
=> OD = OC => O cách đều 2 điểm C và D (đpcm).
Hình vẽ minh họa, sử dụng tính chất trực tâm của tam giác.
Chứng minh cho M là trực tâm của tam giác RPD