cho đa thức f(x)= 1+x+x2+x3+....+ x2010+ x2011
tính f(1) và f(-1)
nhanh nhanh giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ố đề có bị sai không em sao x1+x2+x3=x4+x5+x6
Hay ý em là X1+X2+X3=X4+X5+X6
Ta có: \(x_1+x_2+x_3+........+x_{2011}=0\)
\(\Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+.........+\left(x_{2009}+x_{2010}\right)+x_{2011}=0\)
mà \(x_1+x_2=x_3+x_4=.........=x_{2009}+x_{2010}=2\)
\(\Rightarrow2+2+......+2+x_{2011}=0\)\(\Rightarrow2010+x_{2011}=0\)
\(\Rightarrow x_{2011}=-2010\)
Vậy \(x_{2011}=-2010\)
x1+x2+x3+...+x2011=0
x1+x2=x3+x4=...=x2009+x2010=2
(x1+x2)+(x3+x4)+...+(x2009+x2010)+x2011=0
2+2+2+...+2+x2011=0
2.1005+x2011=0
2010+x2011=0
x2011=0-2010
x2011=-2010
Xong rồi, kick mình nha, như lời hứa ở trong tin nhắn của bạn!
Đặt biểu thức là A
Ta có \(x_1+x_2+x_3+..+x_{2009}+x_{2010}+x_{2011}=0\)
\(< =>\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+..+\left(x_{2008}+x_{2009}+x_{2010}\right)+x_{2011}=0\)
\(< =>2+2+2+..+2+x_{2011}=0\)
Biểu thức trên có tất cả số số 2 là: \(\frac{2010-1+1}{3}=670\)(số)
Nên ta có: \(2.670+x_{2011}=0\)
\(< =>1340+x_{2011}=0\)
\(< =>x_{2011}=-1340\)
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x2011 = 0. Vậy x2011 = -2010
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x 2011 = 0. Vậy x 2011 = -2010
ta có
\(f\left(1\right)=1+1+1^2+...+1^{2011}=1+1+...+1=2012\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+...+\left(-1\right)^{2011}=1-1+1-1+...-1=0\)
bạn cũng FC song joong ki à