Chứng tỏ rằng đa thức sau không có nghiệm: f(x)= x2-x-x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^2+x+x+2\)
\(f\left(x\right)=x^2+2x+1+1\)
\(f\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)
\(\Leftrightarrow f\left(x\right)\ge1\)
Vậy f(x) > 0 nên phương trình không có nghiệm
Ta có : \(f\left(x\right)=x^2+x+x+2\)
\(=x^2+x+x+1+1\)
\(=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức f(x) không có nghiệm
_Chúc bạn học tốt_
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
ta có f(x)=x2+(x+1)2
Do x2\(\ge0\),\(\left(x+1\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+1\right)^2>0\)
(vì không thể đồng thời x=x+1=0 được vì\(x\ne x+1\))
=> đa thức f(x) vô nghiệm (đpcm)
tk mk nha bn
***** Chúc bạn học giỏi*****
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
f(x) = x2 -x-x + 3
= (x2 - x) - x+3
= x(x-1)- x+1+2
=x(x-1) - (x-1) + 3
= (x-1)(x-1) +3
= (x-1)2+3
có (x-1 )2 lớn hơn hoặc = 0
suy ra (x-1)2 + 3 lớn hơn 0; suy ra đa thức này vô nghiệm
nhớ k đấy
x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2
Mà (x+1)^2 \(\ge\)0
=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0
Suy ra đa thức vô nghiệm
ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0
=> x2 + 2x + 3 > 0
=> đa thức trên ko có nghiệm
Chúc bn hok tốt!!!^^
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Ta có: \(f\left(x\right)=x^2-x-x+2=x^2-2x+2=\left(x-1\right)^2+1\)
Do \(\left(x-1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x-1\right)^2+1\ge1>0\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Vậy đa thức f(x) không có nghiệm