Biểu diễn \(\sqrt{\dfrac{a}{b}}\) với \(a< 0;b< 0\) ở dạng thương của hai căn thức
Áp dụng tính \(\sqrt{\dfrac{-49}{-81}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2ab\cdot\dfrac{-15}{b^2a}=\dfrac{-30}{b}\)
b: \(=\dfrac{2}{3}\cdot\left(1-a\right)=\dfrac{2}{3}-\dfrac{2}{3}a\)
c: \(=\dfrac{\left|3a-1\right|}{\left|b\right|}=\dfrac{3a-1}{b}\)
d: \(=\left(a-2\right)\cdot\dfrac{a}{-\left(a-2\right)}=-a\)
Lời giải:
\(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow ax=\sqrt{\frac{2a-b}{b}}\)
\(\Rightarrow 1+ax=\frac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}; 1-ax=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow \frac{1-ax}{1+ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2(b-a)}\)
Lại có:
\(\frac{1+bx}{1-bx}=\frac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\frac{a^2-(2ab-b^2)}{(a-\sqrt{2ab-b^2})^2}=\frac{(a-b)^2}{(a-\sqrt{2ab-b^2})^2}\)
\(\Rightarrow \sqrt{\frac{1+bx}{1-bx}}=\frac{b-a}{a-\sqrt{2ab-b^2}}\)
Do đó:
$A=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2a-2\sqrt{2ab-b^2}}=\frac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1$
a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)
b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)
c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)
d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
\(=9\sqrt{ab}-6b\cdot\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{1}{b}\cdot3b\sqrt{ab}\)
\(=9\sqrt{ab}-6\sqrt{ab}-3\sqrt{ab}=0\)
a) ab2.√3a2b4=ab2.√3√a2b4ab2.3a2b4=ab2.3a2b4
=ab2.√3√a2.√b4=ab2.√3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|
=ab2.√3(−a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=−a|a|=−a và b≠0b≠0 nên b2>0b2>0 ⇒⇒ ∣∣b2∣∣=b2|b2|=b2)
=−√3=−3.
b) √27(a−3)248=√9(a−3)21627(a−3)248=9(a−3)216
=√9.√(a−3)2√16=3.|a−3|4=9.(a−3)216=3.|a−3|4
=3(a−3)4=3(a−3)4.
(Do a>3a>3 nên |a−3|=a−3|a−3|=a−3)
c) √9+12a+4a2b2=√32+2.3.2a+(2a)2√b29+12a+4a2b2=32+2.3.2a+(2a)2b2
=√(3+2a)2√b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b=3+2a−b=−2a+3b.
(Do a≥−1,5a≥−1,5 ⇒⇒ 3+2a≥03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=−b|b|=−b)
d) (a−b).√ab(a−b)2=(a−b).√ab√(a−b)2(a−b).ab(a−b)2=(a−b).ab(a−b)2
=(a−b).√ab|a−b|=(a−b).√ab−(a−b)=(a−b).ab|a−b|=(a−b).ab−(a−b)
=−√ab=−ab.
(Do a<b<0a<b<0 nên |a−b|=−(a−b)|a−b|=−(a−b) và ab>0ab>0)
a) ab2.√3a2b4=ab2.√3√a2b4ab2.3a2b4=ab2.3a2b4
=ab2.√3√a2.√b4=ab2.√3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|
=ab2.√3(−a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=−a|a|=−a và b≠0b≠0 nên b2>0b2>0 ⇒⇒ ∣∣b2∣∣=b2|b2|=b2)
=−√3=−3.
b) √27(a−3)248=√9(a−3)21627(a−3)248=9(a−3)216
=√9.√(a−3)2√16=3.|a−3|4=9.(a−3)216=3.|a−3|4
=3(a−3)4=3(a−3)4.
(Do a>3a>3 nên |a−3|=a−3|a−3|=a−3)
c) √9+12a+4a2b2=√32+2.3.2a+(2a)2√b29+12a+4a2b2=32+2.3.2a+(2a)2b2
=√(3+2a)2√b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b=3+2a−b=−2a+3b.
(Do a≥−1,5a≥−1,5 ⇒⇒ 3+2a≥03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=−b|b|=−b)
d) (a−b).√ab(a−b)2=(a−b).√ab√(a−b)2(a−b).ab(a−b)2=(a−b).ab(a−b)2
=(a−b).√ab|a−b|=(a−b).√ab−(a−b)=(a−b).ab|a−b|=(a−b).ab−(a−b)
=−√ab=−ab.
(Do a<b<0a<b<0 nên |a−b|=−(a−b)|a−b|=−(a−b) và ab>0ab>0)
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
a) Rút gọn biểu thức A:
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\dfrac{a-1}{\sqrt{a}+1}\)
\(A=\left(\dfrac{a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\dfrac{a-1}{\sqrt{a}+1}\)
\(A=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\)
b) Để A< 0 thì :
\(A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow\sqrt{a}< 1\Leftrightarrow a< 1\)
Vậy A<0 khi a<1.
\(\sqrt{\dfrac{a}{b}}\)=\(\dfrac{\sqrt{a}}{\sqrt{b}}\) với a,b<0
Ta có : \(\sqrt{\dfrac{-49}{-81}}\)=\(\sqrt{\dfrac{49}{81}}\)=\(\dfrac{7}{9}\)