Cho f(x)=ax3+bx2+cx+d (x # 0) có nghiệm là 1 và -1
a) Tìm mối quan hệ giữa a,b,c,d
b) Tìm nghiệm còn lại của f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Chọn D .
Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.
Hàm số của đồ thị (I) có a > 0 nên loại luôn phương án C.
Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án D.
Đáp án D
Đặt , phương trình trở thành .
Nhìn vào đồ thị ta thấy phương trình có 3 nghiệm thuộc khoảng , với mỗi giá trị t như vậy phương trình có 3 nghiệm phân biệt.
Vậy phương trình có 9 nghiệm.
b) Cho f(x)=ax3+bx2+cx+d , trong đó a,b,c,d là hằng số và thoả mãn: b=3a+c, Chứng tỏ rằng: f(1)=f(2)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Từ (1) và (2) ➩ f(1) = f(2) [= 4a + 2 + d]
Đáp án A
Ta có f x + 1 = x 3 + 3 x 2 + 3 x + 2 = x + 1 3 + 1 ⇒ f x = x 3 + 1