so sánh
\(\dfrac{2009}{2010}\)va\(\dfrac{2010}{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
A=-2015/2015x2016
A=-1/2016
B=-2014/2014x2015
B=-1/2015
vi 2016>2015,-1/2016>-1/2015
vay A>B
b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)
Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)
Ta có: \(10^{2010}+1< 10^{2011}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)
\(\Leftrightarrow10A>10B\)
hay A>B
=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)
\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
\(\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right):\dfrac{456}{123}\)
\(=\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\cdot\dfrac{123}{456}\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\right]\)
\(=\dfrac{123}{456}\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}-\dfrac{2009}{2010}+\dfrac{1}{2011}\right)\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}+\dfrac{1}{2011}\right)-\left(\dfrac{2011}{2010}+\dfrac{2009}{2010}\right)\right]\)
\(=\dfrac{123}{456}\left(1-2\right)\)
\(=-\dfrac{123}{456}\)
Ta có :
\(1-\dfrac{2009}{2010}=\dfrac{1}{2010}\\ 1-\dfrac{2010}{2011}=\dfrac{1}{2011}\)
Mà \(\dfrac{1}{2010}>\dfrac{1}{2011}\) \(\Rightarrow\dfrac{2009}{2010}< \dfrac{2010}{201}\)
2009/2010>2010/2011
lấy 1 trừ cho các phân số rồi so sánh
chúc bạn học tốt!