Cho mặt cầu (S) có tâm O và bán kính R biết diện tích của (S) là 36π. Hai điểm A,B thuộc (S) và khoảng cách từ O đến AB là 2 căn 2 Tính AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=4\pi R^2=36\pi\Rightarrow R=3\)
\(\Rightarrow OB=R=3\)
Áp dụng định lý Pitago cho tam giác OAB:
\(AB=\sqrt{OA^2-OB^2}=\sqrt{5^2-3^2}=4\)
\(\widehat{MON}=180^0-\widehat{MAN}=120^0\)
\(S=4\pi R^2=36\pi\Rightarrow R=3\Rightarrow OM=ON=3\)
Áp dụng định lý hàm cos cho tam giác MON:
\(MN=\sqrt{OM^2+ON^2-2OM.ON.cos\widehat{MON}}=\sqrt{3^2+3^2-2.3.3.cos120^0}=3\sqrt{3}\)
\(S=4\pi R^2=36\pi\Rightarrow R=3\)
\(V=\dfrac{4}{3}\pi R^3=36\pi\)
\(S=\dfrac{4}{3}\pi R^3=288\pi\Rightarrow R=6\)
Áp dụng định lý Pitago:
\(r=\sqrt{R^2-d^2}=\sqrt{6^2-\left(2\sqrt{5}\right)^2}=4\)
Đáp án D
Từ vị trí tương đối của một mặt phẳng và mặt cầu ta có mặt phẳng (P) có điểm chung với mặt cầu (S) khi và chỉ khi mặt phẳng (P) tiếp xúc hoặc cắt mặt cầu (S).
ì 0 < a < b < r ⇒
Vậy đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) có bán kính lớn hơn mặt cầu S(O; r) và mặt phẳng (β)
Đáp án D
Từ vị trí tương đối của một mặt phẳng với mặt cầu ta có đáp án đúng là D.
\(S=4\pi R^2=36\pi\Rightarrow R=3\) \(\Rightarrow OA=3\)
Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) và \(OH=2\sqrt{2}\)
Pitago tam giác vuông OAH:
\(AH=\sqrt{OA^2-OH^2}=1\)
\(\Rightarrow AB=2AH=2\)