Tìm max, min P = \(\dfrac{x^2-x+1}{x^2+x+1}\).
Dzúp mk bài này ha
Mk thank you trc.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^2+2x+17}{2\left(x+1\right)}=\dfrac{x^2-6x+9+8x+8}{2\left(x+1\right)}\\ =\dfrac{\left(x-3\right)^2+8\left(x+1\right)}{2\left(x+1\right)}=\dfrac{\left(x-3\right)^2}{2\left(x+1\right)}+4\)
Vì \(\left(x-3\right)^2\ge0;2\left(x+1\right)>0\) (do \(x>-1\))
\(\Rightarrow\dfrac{\left(x-3\right)^2}{2\left(x+1\right)}\ge0\Leftrightarrow A=\dfrac{\left(x-3\right)^2}{2\left(x+1\right)}+4\ge4\)
Dấu "=" xảy ra khi \(x=3\)
Vậy....
Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0
=> 24x - 10 = 0
=> 24x = 10
=> x = 5/12
Vạy x = 5/12
Bài 4 : Ta có : M = x2 + 6x - 1
=> M = x2 + 6x + 9 - 10
=> M = (x + 3)2 - 10
Vì : \(\left(x+3\right)^2\ge0\forall x\)
Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)
Vậy Mmin = -10 khi x = -3
a: \(A=\left|3x-9\right|+1.5\ge1.5\forall x\)
Dấu '=' xảy ra khi x=3
b: \(B=\left|x-7\right|-14\ge-14\forall x\)
Dấu '=' xảy ra khi x=7
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)
\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)
\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)
1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)
=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Câu 1: \(x+3\left(x+8\right)=40\)
\(\Rightarrow x+3x+3.8=40\)
\(x\left(1+3\right)+24=40\)
\(4x=40-24\)
\(4x=16\Rightarrow x=\frac{16}{4}=4\)
Câu 2: \(24+2\left(x+2\right)=80\)
\(\Rightarrow2x+2.2=80-24\)
\(2x=80-24-2.2\)
\(2x=80-24-2.2=52\)
\(\Rightarrow x=\frac{52}{2}=26\)
Câu 3: \(5x-2x=60\)
\(\Rightarrow x\left(5-2\right)=60\)
\(3x=60\Rightarrow x=\frac{60}{3}=20\)
Có chỗ nào ko hiểu nhắn mk nhé
x+3(x+8)=40
x+3x+24=40
4x+24=40
4x=16
x=4
24+2(x+2)=80
24+2x+4=80
28+2x=80
2x=52
x=26
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
A = |x - 6| + 15
Có: |x - 6| \(\ge\)0. Dấu ''='' xảy ra khi x - 6 = 0 => x = 6.
Vậy GTNN của A = |x - 6| + 15 là 15 khi x = 6.
B = (x - 3)2 - 20
Có: (x - 3)2 \(\ge\)0. Dấu ''='' xảy ra khi x - 3 = 0 => x = 3.
Vậy GTNN của B là -20 khi x = 3.