K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

\(2.A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

=> 2.A - A = \(\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

=> A = \(\left(2+\frac{3}{2^2}-1-\frac{100}{2^{100}}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)\)

A = \(1+\frac{3}{2^2}-\frac{100}{2^{100}}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)+\frac{2}{2^2}-\frac{100}{2^{100}}\)

Tính B = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

2.B = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\) => 2.B - B = \(1+\frac{1}{2}-\frac{1}{2^{99}}\)=> B = \(\frac{3}{2}-\frac{1}{2^{99}}\)

Vậy A = \(\frac{3}{2}-\frac{1}{2^{99}}+\frac{2}{2^2}-\frac{100}{2^{100}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=2=\frac{2^{101}-102}{2^{100}}\)

2 tháng 4 2023

1+1=3 :)))

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

11 tháng 3 2019

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)

\(\Rightarrow A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Đặt   \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

    \(\Rightarrow2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow B=2-\frac{1}{2^{99}}\Rightarrow A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

1 tháng 2 2018

ko bít

1 tháng 2 2018

em cũng ko luôn

12 tháng 3 2020

ko chép đề

2A=\(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2.5^5}+...+\frac{100}{2^{99}}\)    

đến đây mik thấy đề sai

đáng lẽ \(\frac{5}{5^5}\)phải là \(\frac{5}{2^5}\)

à đề sai đó, bn làm giúp mk vs