Tìm max :
a) \(5-x^2\)
b) \(\dfrac{1}{5+x^2}\)
c) \(\dfrac{3}{x^2-4x+7}\)
d) \(-2x^2+3x+2017\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`
`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`
`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`
`<=> -55x +20 = 24x-138`
`<=> -55x -24x=-138-20`
`<=>-79x=-158`
`<=> x=2`
Vậy pt có nghiệm `x=2`
`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`
`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2)) = 2/(x(x-2))`
`=> x^2 +2x - x +2 = 2`
`<=> x^2 + x =0`
`<=>x(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)
Vậy pt có nghiệm `x=-1`
`c,2x^3 + 6x^2 =x^2 +3x`
`<=> 2x^3 + 6x^2 -x^2 -3x=0`
`<=> 2x^3 + 5x^2 -3x=0`
`->` Đề có sai ko ạ ?
`d,` \(\left|x-4\right|+3x=5\) `(1)`
Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :
`x-4 = 5-3x`
`<=> x+3x=5+4`
`<=> 4x=9`
`<=> x= 9/4 (t//m)`
Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :
`-(x-4) =5-3x`
`<=> -x +4=5-3x`
`<=> -x+3x=5-4`
`<=> 2x =1`
`<=>x=1/2 ( kt//m)`
Vậy phương trình có nghiệm `x=9/4`
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
a)Ta thấy: \(x^2\ge0\forall x\)\(\Rightarrow-x^2\le0\forall x\)\(\Rightarrow5-x^2\le5\forall x\)
Đẳng thức xảy ra khi \(-x^2=0\Rightarrow x=0\)
b)Ta thấy:\(x^2\ge0\forall x\)\(\Rightarrow5+x^2\ge5\forall x\)\(\Rightarrow\dfrac{1}{5+x^2}\le\dfrac{1}{5}\forall x\)
Đẳng thức xảy ra khi \(x^2=0\Rightarrow x=0\)
c)Ta có: \(x^2-4x+7=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\forall x\)\(\Rightarrow\dfrac{1}{\left(x-2\right)^2+3}\le\dfrac{1}{3}\forall x\)
\(\Rightarrow\dfrac{3}{\left(x-2\right)^2+3}\le\dfrac{3}{3}=1\forall x\)
Đẳng thức xảy ra khi \(\left(x-2\right)^2=0\Rightarrow x=2\)
d)\(-2x^2+3x+2017\)
\(=\dfrac{16145}{8}-2x^2+3x-\dfrac{9}{8}\)
\(=\dfrac{16145}{8}-2\left(x^2-\dfrac{3x}{2}+\dfrac{9}{16}\right)\)
\(=\dfrac{16145}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{16145}{8}\forall x\)
Đẳng thức xảy ra khi \(-2\left(x-\dfrac{3}{4}\right)^2=0\)\(\Rightarrow x=\dfrac{3}{4}\)
a) ta có: \(-x^2\le0\) với mọi x
=> \(5-x^2\le5\) với mọi x
dấu "=" xảy ra khi x= 0
vậy max = 5 khi x = 0
b) để \(\dfrac{1}{5+x^2}\) nhận max
<=> 5+x2 nhận min
mà x2 \(\ge\) 0 với mọi x
=> 5+x2\(\ge\) 5 với mọi x
dấu "=" xảy ra khi x = 0
vậy Min của 5 +x2 =5 khi x =0
=> max của \(\dfrac{1}{5+x^2}\) = \(\dfrac{1}{5}\) khi x =0
c) để \(\dfrac{3}{x^2-4x+7}\) nhận max
<=> x2-4x+7 nhận min
ta có: x2-4x+7 = (x-2)2+3
mà (x-2)2 \(\ge\) 0 với mọi x
=> (x-2)2+3 \(\ge\) 3 với mọi x
<=> x2-4x+7 \(\ge\) 3 với mọi x
dấu "=" xảy ra khi x=2
=> min của x2 -4x+7 = 3 khi x=2
=> max của \(\dfrac{1}{x^2-4x+7}=\dfrac{1}{3}\) khi x=2
d) Ta có:-2x2+3x+2017
= \(-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)+2018,125\)
= \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)
mà \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
=> \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)\(\le\) 2018,125 với mọi x
=> -2x2+3x+2017 \(\le\) 2018,125 với mọi x
dấu "=" xảy ra khi x =\(\dfrac{3}{4}\)
=> max của -2x2+3x+2017 = 2018,125 khi \(x=\dfrac{3}{4}\)