K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

mng giúp nhanh mình cần gấp

17 tháng 8 2021

  \(3\sqrt{a^2+1}-4\sqrt{4a^2+4}+2\sqrt{9a^2+9}\)

\(3\sqrt{a^2+1}-8\sqrt{a^2+1}+6\sqrt{a^2+1}\)

\(\sqrt{a^2+1}\left(3-8+6\right)\)

\(\sqrt{a^2+1}\)

học tốt

8 tháng 11 2021

a) \(=5\left|a\right|+3a=5a+3a=8a\)

b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)

8 tháng 11 2021

làm chi tiết cho em câu b đi ạ

21 tháng 12 2023

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

21 tháng 12 2023

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

8 tháng 7 2023

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

29 tháng 6 2021

`c)1/(2sqrt2)-3/2sqrt{4,5}+2/5sqrt{50}`

`=1/(2sqrt2)-3/2sqrt{9/2}+2/5sqrt{25.2}`

`=1/(2sqrt2)-9/(2sqrt2)+2sqrt2`

`=2sqrt2-8/(2sqrt2)`

`=2sqrt2-sqrt2=sqrt2`

`d)4/(3+sqrt5)-8/(1+sqrt5)+15/sqrt5`

`=(4(3-sqrt5))/(9-5)-(8(sqrt5-1))/(5-1)+3sqrt5`

`=3-sqrt5-2(sqrt5-1)+3sqrt5`

`=3+3sqrt5-3sqrt5+2=5`

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

23 tháng 7 2016

Bài 1

a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)    (ĐK : x\(\ge0\) ; x\(\ne\) 1)

        \(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

         \(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)

Mà Ư(2)={-1;1;2;-1}

=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

\(\sqrt{a}-1\)1-12-2
a409\(\sqrt{a}=-1\) (ktm)

vậy a={0;4;9} thì P nguyên

23 tháng 7 2016

Bài 2

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)

      \(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

     \(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)

      \(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)

     \(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)

     \(=\frac{2a}{\sqrt{a-4}}\)

8 tháng 7 2021

\(b.\)

\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)

\(=\left|3a\right|\cdot\left|b-2\right|\)

Với : \(a=2,b=-\sqrt{3}\)

\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)

8 tháng 7 2021

\(a.\)

\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)

Với : \(x=-\sqrt{2}\)

\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)

 

b: B=căn 49a^2+3a

=|7a|+3a

=7a+3a(a>=0)

=10a

c: C=căn16a^4+6a^2

=4a^2+6a^2

=10a^2

d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)

TH1: a>=0

D=6a^3-6a^3=0

TH2: a<0

D=-6a^3-6a^3=-12a^3

e: \(E=3\sqrt{9a^6}-6a^3\)

\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)

=3*3a^3-6a^3(a>=0)

=3a^3

f: \(F=\sqrt{16a^{10}}+6a^5\)

\(=\sqrt{\left(4a^5\right)^2}+6a^5\)

=-4a^5+6a^5(a<=0)

=2a^5

14 tháng 4 2021

a, \(2\sqrt{a^2}-5a=2\left|a\right|-5a\)do a < 0 

\(=-2a-5a=-7a\)

b, \(\sqrt{25a^2}+3a=\sqrt{\left(5a\right)^2}+3a=\left|5a\right|+3a\)do \(a\le0\)

TH1 : \(-5a+3a=-2a\)với \(a< 0\)

hoặc TH2 : \(5+3=8\)

c, \(\sqrt{9a^4}+3a^2=\sqrt{\left(3a^2\right)^2}+3a^2=\left|3a^2\right|+3a^2\)

\(=3a^2+3a^2=6a^2\)do \(3>0;a^2\ge0\forall a\Rightarrow3a^2\ge0\forall a\)

d, \(5\sqrt{4a^6}-3a^3=5\sqrt{\left(2a^3\right)^2}-3a^3\)

\(=5\left|2a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)do \(a< 0\Rightarrow a^3< 0\)

21 tháng 5 2021

a) \(2\sqrt{a^2}-5a\)=2\(|a|\)-5a = -2a-5a=-7a

b) \(\sqrt{25a^2}\) +3a = 5\(|a|\) + 3a=5a+3a=8a.

c) \(\sqrt{9a^4}\) + 3\(a^2\)=6\(a^2\)

d) \(5\sqrt{4a^6}\) - 3\(a^3\)=-13\(a^3\)