Cho a, b, c, d là số dương, a>b, c,>d .chứng minh a/b, c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c,d là các số dương, chứng minh : (a-b)/(b+c) + (b-c)/(c+d) + (c-d)/(d+a) + (d-a)/(a+b) >= 0
Bất đẳng thức cần chứng minh tương đương với \(\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4,\) hay tương đương với
\(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4.\)
Bất đẳng thức cuối cùng đúng, và chứng minh như sau: Theo bất đẳng thức Cauchy-Schwartz ta có \(\frac{1}{b+c}+\frac{1}{a+d}\ge\frac{4}{\left(b+c\right)+\left(a+d\right)}=\frac{4}{a+b+c+d},\) \(\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{\left(c+d\right)+\left(a+b\right)}=\frac{4}{a+b+c+d}.\) Thành thử
\(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4.\) (ĐPCM)
Có:\(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\)
\(\Rightarrow ac>bd\)
\(\Leftrightarrow\frac{a}{d}>\frac{b}{c}\)
đpcm
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath