chứng minh rằng trong 6 số nguyên a1 a2 a3 a4 a5 a6 thỏa mãn a1^2+a2^2+a3^2+a4^2+a5^2=a6^2 thì các số ko đồng thời là số lẻ
trình bày rõ ha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
Ta có biẻu thức:
a1^2+a2^2+a3^2+a4^2+a5^2=a6^2
Giả sử cả sáu số đều là số lẻ => mỗi hạng tử ở vế phải khi chia cho 8 đều có số dư là 1
<=>Nhưng ở vế trái khi cùng chia cho 8 thì lại dư 5 (mâu thuẫn)
Vậy cả sáu số trên đều không thể là số lẻ.