K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

A=1/15-1/16+1/16-1/17+...+1/2016-1/2017

A=1/15-1/2017

A=2002/30255

15 tháng 4 2017

C=1/3[3/5.8+3/8.11+...+3/101.104]

C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]

C=1/3[1/5-1/104]

C=1/3.99/520

C=33/520

28 tháng 5 2022

`1//([-1]/2)^2 . |+8|-(-1/2)^3:|-1/16|=1/4 .8+1/8 .16=2+2=4`

`2//|-0,25|-(-3/2)^2:1/4+3/4 .2017^0=0,25-2,25.4+0,75.1=0,25-9+0,75=-8,75+0,75-8`

`3//|2/3-5/6|.(3,6:2 2/5)^3=|-1/6|.(3/2)^3=1/6 . 27/8=9/16`

`4//|(-0,5)^2+7/2|.10-(29/30-7/15):(-2017/2018)^0=|1/4+7/2|.10-1/2:1=|15/4|.10-1/2=15/4 .10-1/2=75/2-1/2=37`

`5// 8/3+(3-1/2)^2-|[-7]/3|=8/3+(5/2)^2-7/3=8/3+25/4-7/3=107/12-7/3=79/12`

15 tháng 12 2021

\(a.=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{3}{2}+\dfrac{7}{3}-\dfrac{5}{2}=\dfrac{1+3-5}{2}-\dfrac{2+5-7}{3}=\dfrac{-1}{2}\)

\(b.\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}=\left(-\dfrac{5}{12}\right)^2:\dfrac{5}{12}=\dfrac{5}{12}\)

15 tháng 12 2021

thanks nhìu

Ta có: \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)

\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-99}{100}\)

\(=-\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)

\(=-\dfrac{10+1}{2\cdot10}=\dfrac{-11}{20}\)

Phải thế này nha bạn!

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\)

\(=\dfrac{2^2-1^2}{2^2}.\dfrac{3^2-1^2}{3^2}.\dfrac{4^2-1^2}{4^2}...\dfrac{10^2-1^2}{10^2}\)

\(=\dfrac{\left(2+1\right)\left(2-1\right)}{2.2}.\dfrac{\left(3+1\right)\left(3-1\right)}{3.3}.\dfrac{\left(4+1\right)\left(4-1\right)}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)

\(=\dfrac{\left[1.2.3...\left(10+1\right)\right]\left[3.4.5...\left(10-1\right)\right]}{\left(2.3.4...10\right)\left(2.3.4...10\right)}\)

\(=\left(10+1\right).\dfrac{1}{2.10}\)

\(=\dfrac{11}{20}\)

Theo mình nghĩ phải như thế này.

11 tháng 4 2022

a, = (58/9 + 7/11) - (40/9 - 26/11)

= 701/99 - 206/99

= 5

b, = 51/5 - 11/2 . 60/11 + 3 : 3/20

= 51/5 - 30 + 20

= -99/5 + 20

= 1/5

c, = 19/4 + (-0,37) + 1/8 + (-1,8) + (-2,5) + 37/12

= 219/50 + -67/40 + 7/12

= 1973/600

4 tháng 12 2018

a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)

( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)

(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)

1/x +1/x+4

2x+4/x(x+4)

4 tháng 12 2018

Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé

a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x+1}{\left(x-1\right)^2}\)

b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)

\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)

\(=\dfrac{2\left(1-3x\right)}{3x+1}\)

c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)

\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)