1.Cho a,b,c,d ∈ N thỏa mãn:a2+c2=b2+d2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
Bên dưới có giải thích chi tiết rồi đó em:
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh a2+b2+c2+d2-2ab-2bc-2cd-2da\(\ge\)- \(\frac{1}{4}\) - Hoc24
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có:
a/(1+b²) = a- ab²/(1+b²) ≥ a - ab/2 (do 1+b² ≥ 2b)
Tương tự ta có:
b/(1+c²) ≥ b- bc/2
c/(1+d²) ≥ c - cd/2
d/(1+a²) ≥ d - ad/2
Cộng vế với vế ta được:
VT = a/(1+b²) + b/(1+c²) + c/(1+d²) + d/(1+a²) ≥ (a+b+c+d) - (ab+bc+cd+da)/2
VT ≥ (a+b+c+d -ab+bc+cd+da)/2 + (a+b+c+d)/2
Ta có:
ab+bc+cd+da = (a+c)(b+d) ≤ [(a+b+c+d)/2]² = 4 = a+b+c+d
=> a+b+c+d ≥ ab+bc+cd+da
=> VT ≥ (a+b+c+d)/2 =2
Dấu = khi a=b=c=d=1
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
`a^2+b^2+c^2+d^2+1>=a+b+c+d`
`<=>4(a^2+b^2+c^2+d^2+1)>=4a+4b+4c+4d`
`<=>4a^2-4a+1+4b^2-4b+1+4c^2-4c+1+4d^2-4d+1>=0`
`<=>(2a-1)^2+(2b-1)^2+(2c-1)^2+(2d-1)^2>=0`(luôn đúng)
`=>a^2+b^2+c^2+d^2+1>=a+b+c+d`
Dấu "=" xảy ra khi `2a-1=2b-1=2c-1=2d-1=0<=>a=b=c=d=1/2`
Hỏi:
CM:a+b+c+d là hợp số
Sửa đề: Cho \(a,b,c,d\in N\)*\(...\)
Giải:
Ta có:
\(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Do \(a\in N\)* nên \(a-1;a\) là hai số tự nhiên liên tiếp
\(\Rightarrow a\left(a-1\right)⋮2\). Tương tự ta cũng có: \(\left\{{}\begin{matrix}b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\)
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có: \(a^2+c^2=b^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn
Do đó \(a+b+c+d\) là số chẵn \(\left(1\right)\)
\(\Rightarrow a+b+c+d>2\) \((\)Do \(a,b,c,d\in N\)*\()\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a+b+c+d\) là hợp số (Đpcm)