Cho hàm số :
\(y=-\dfrac{1}{3}x^3+x^2+m-1\)
a) Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị. Xác định m để một trong những điểm cực trị đó thuộc trục Ox
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m=\dfrac{1}{3}\)
c) Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó vuông góc với đường thẳng \(y=\dfrac{1}{3}x-2\)
d) Tính diện tích hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng \(x=0;x=2\)
Tham khảo: