K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Từ phương trình ta có:

\(q^2\equiv 3\ (mod\ 5)\)\(q^2\equiv 0,\ 1,\ 4\ (mod \ 5) \ \forall q\in\mathbb{N}\)

Nên phương trình vô nghiệm!

5 tháng 2 2016

các số nguyên tố b thỏa mãn là : 3

 

21 tháng 4 2019

2.(xy - 3) = x

=> 2xy - 6 = x

=> 2xy - x = 6

=> x.(2y - 1) = 6

Vậy x và 2y -1 thuộc ước của 6

tới đây dễ rồi bạn nhé :D => bạn tự làm nhé, bye

12 tháng 12 2019

dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6

25 tháng 3 2019

Ta có: abc < ab+bc+ca

\(\Rightarrow\frac{ab+bc+ca}{abc}>\frac{abc}{abc}\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}>1\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)

Vì a,b,c có vai trò như nhau . Nếu giả sử a>b>c

\(\Rightarrow\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\Rightarrow1< \frac{1}{c}+\frac{1}{a}+\frac{1}{b}< \frac{3}{c}\)

\(\Rightarrow1< \frac{3}{c}\)

\(\Rightarrow c>3\)  mà c là SNT \(\Rightarrow c=2\left(1\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}>1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow b>2\). Giả sử b > 3

 \(\frac{1}{b}< \frac{1}{3}\left(2\right)\)mà \(\frac{1}{a}< \frac{1}{b}\)

\(\Rightarrow\frac{1}{a}< \frac{1}{3}\)

Kết hợp (2) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)mà \(\frac{2}{3}>\frac{1}{2}\)

\(\Rightarrow\) giả sử sai

\(\Rightarrow b< 3\)mà \(b\ne c\Rightarrow b\ne2\)và b là SNT

\(\Rightarrow b=3\left(3\right)\)

\(\Rightarrow\frac{1}{a}>\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow a< 6\)mà \(a>b;b=3;b\ne a\)

\(\Rightarrow3< a< 6\)mà a là SNT

\(\Rightarrow a=5\left(4\right)\)

Mà a,b,c vai trò như nhau

 Kết hợp (1) , (3) , (4) \(\Rightarrow\left(a,b,c\right)\in\left\{\left(2,3,5\right);\left(5,3,2\right);\left(3,2,5\right);\left(5,2,3\right);\left(2,5,3\right);\left(3,5,2\right)\right\}\)( tm điều kiện ) 

   Mn tham khảo nhé