tính c=1+1/21+2)+1/3(1+2+3)+...+1/20(1+2+...+20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=20
Vậy các bạn cho mình hỏi cách tính như thế nào để ra 20 được không ?
Bài 1:
\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)
\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)
\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)
Bài 2:
a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)
\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)
\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)
b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)
Bài 3:
\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)
\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)
Bài 4:
\(\dfrac{3}{4}-x=1\)
\(\Rightarrow-x=1-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
\(x+4=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{5}-4\)
\(\Rightarrow x=-\dfrac{19}{5}\)
Vậy: \(x=-\dfrac{19}{5}\)
\(x-\dfrac{1}{5}=2\)
\(\Rightarrow x=2+\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{11}{5}\)
Vậy: \(x=\dfrac{11}{5}\)
\(x+\dfrac{5}{3}=\dfrac{1}{81}\)
\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)
\(\Rightarrow x=-\dfrac{134}{81}\)
Vậy: \(x=-\dfrac{134}{81}\)
1. Tính nhanh:
a, 1/1 * 2 + 1/2 * 3 + 1/3 * 4
b, 5/11 *16 + 5/16 * 21 + 5/21 * 26
c, 1/20 + 1/30 + 1/42
a) 1/1 x 2 + 1/2 x 3 + 1/3 X 4 = 29/6
b) 5/11 x 16 + 5/16 x 21 + 5/21 x 26 = 74015/3696
c) 1/20 +1/30 + 1/42 = 3/28
nho k minh nha
Sửa đề : S= -1/2-1/3-1/4-.....-1/20 + 3/2 + 4/3 + 5/4 + ... + 21/20 . Tính S
\(S=\left(\frac{3}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{5}{4}-\frac{1}{4}\right)+...+\left(\frac{21}{20}-\frac{1}{20}\right)\)
\(S=1+1+1+...+1\)( 20 số 1 )
\(S=20\)
\(1=2-1=\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)=>\(\dfrac{1}{1+\sqrt{2}=}=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{1+\sqrt{2}}=\sqrt{2}-1\)
cmtt thì biểu thức thành
\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{21}-\sqrt{20}\)=\(1+\sqrt{21}\)
a/ \(=\frac{21}{23}+\frac{125}{143}-\frac{101.21}{101.23}-\frac{1001.125}{1001.143}=0\)
b/ \(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}-\frac{10}{21}+\frac{3}{20}=\frac{7}{20}-\frac{1}{5}=\frac{4}{20}\)
c/ \(\frac{C}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(\frac{C}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{21-20}{20.21}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(\frac{C}{2}=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\Rightarrow C=\frac{19}{21}\)
\(C=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)
\(=1+\dfrac{1}{2}2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+4+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)