K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)

NV
13 tháng 1

ĐKXĐ:

a.

\(x^2-16>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)

b.

\(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)

c.

\(\left(2-x\right)\left(x+1\right)>0\Rightarrow-1< x< 2\)

d.

\(\left(x^2-1\right)\left(x+5\right)>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\x>1\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)

Hàm số đồng biến là: \(log_{\pi}x\)

Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)

NV
13 tháng 1

ĐKXĐ:

a.

\(2x^2+4x>0\Leftrightarrow\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\)

b.

\(x^2-4>0\Rightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

c.

\(x^2+3x-4>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\)

d.

\(\left(x-4\right)\left(x+2\right)>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -2\end{matrix}\right.\)

e.

\(\left(x^2-4\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}-9< x< -2\\x>2\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)

Mà \(\left|x+3\right|\ge0\forall x\in R\)

\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)

Vậy tập xác định của hàm số là D = R \ {-3}.

b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)

\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)

Vậy tập xác định của hàm số là D = (-2;2).

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)

\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

c, ĐK: \(x-2>0\Rightarrow x>2\)

\(2log_5\left(x-2\right)=log_59\\ \Leftrightarrow log_5\left(x-2\right)^2=log_59\\ \Leftrightarrow\left(x-2\right)^2=3^2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5.

d, ĐK: \(x-1>0\Leftrightarrow x>1\)

\(log_2\left(3x+1\right)=2-log_2\left(x-1\right)\\ \Leftrightarrow log_2\left(3x+1\right)\left(x-1\right)=2\\ \Leftrightarrow3x^2-2x-1=4\\ \Leftrightarrow3x^2-2x-5=0\\ \Leftrightarrow\left(3x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm \(x=\dfrac{5}{3}\)

30 tháng 5 2017

TenAnh1 TenAnh1

17 tháng 8 2023

tham khảo:

a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)

\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)

b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)

c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)

\(=2e^xsinx\left(cosx+sinxcosx\right)\)

\(=2e^xsinxcos^2x\)

d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)

NV
1 tháng 11 2021

a.

\(y'=\dfrac{\left(1+\sqrt{3x-1}\right)'}{1+\sqrt{3x-1}}=\dfrac{3}{2\left(1+\sqrt{3x-1}\right)\sqrt{3x-1}}\)

b.

\(y'=\dfrac{\left(2sin^2x-1\right)'}{\left(2sin^2x-1\right).ln10}=\dfrac{2sin2x}{\left(2sin^2x-1\right)ln10}\)

c.

\(y'=\left(3x^2+3\right)3^{x^3+3x+1}.e^x.ln3+3^{x^3+3x+1}.e^x\)