Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\sqrt{x+5}-\sqrt{x+1}=9+x\)
Giari phương trình trên
\(đk:x\ge-1\)
\(\Leftrightarrow4\sqrt{x+5}-\sqrt{x+1}-x-9=0\)
\(\Leftrightarrow4\frac{\left(\sqrt{x+5}-2\right)\left(\sqrt{x+5}+2\right)}{\sqrt{x+5}+2}-\sqrt{x+1}-x-1=0\)
\(\Leftrightarrow4\cdot\frac{x+5-4}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow4\cdot\frac{x+1}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}\right)=0\)
th1: \(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}=0\)
có : \(x\ge-1\Rightarrow\frac{4}{\sqrt{x+5}+2}\le1\Rightarrow\frac{4}{\sqrt{x+5}+2}-1\le0\) và \(-\sqrt{x+1}\le0\) nên
\(\hept{\begin{cases}\frac{4}{\sqrt{x+5}+2}-1=0\\\sqrt{x+1}=0\end{cases}}\Leftrightarrow x=-1\left(tm\right)\)
th2 : \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(tm\right)\)
vậy
\(đk:x\ge-1\)
\(4\sqrt{x+5}-\sqrt{x+1}=9+x\)
\(\Leftrightarrow4\sqrt{x+5}-\sqrt{x+1}-x-9=0\)
\(\Leftrightarrow4\frac{\left(\sqrt{x+5}-2\right)\left(\sqrt{x+5}+2\right)}{\sqrt{x+5}+2}-\sqrt{x+1}-x-1=0\)
\(\Leftrightarrow4\cdot\frac{x+5-4}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow4\cdot\frac{x+1}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}\right)=0\)
th1: \(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}=0\)
có : \(x\ge-1\Rightarrow\frac{4}{\sqrt{x+5}+2}\le1\Rightarrow\frac{4}{\sqrt{x+5}+2}-1\le0\) và \(-\sqrt{x+1}\le0\) nên
\(\hept{\begin{cases}\frac{4}{\sqrt{x+5}+2}-1=0\\\sqrt{x+1}=0\end{cases}}\Leftrightarrow x=-1\left(tm\right)\)
th2 : \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(tm\right)\)
vậy