K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

a) Ta thấy điểm \(A\left(-1;1\right)\) thoả mãn phương trình của đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\)  vì \(\left(m-2\right)\cdot\left(-1\right)+\left(m-1\right)\cdot1=-m+2+m-1=1.\) Vậy đường thẳng luôn đi qua điểm cố đinh là \(A\left(-1;1\right)\).

b)  Kẻ \(OH\perp d.\) Vì \(A\in d\)  nên \(OH\le OA.\) Dấu bằng xảy ra khi và chỉ khi \(H\equiv A\) hay đường thẳng \(d\perp OA\).  Ta có phương trình đường thẳng \(OA\)  là \(y=ax\) . Vì  \(OA\)  đi qua \(A\left(-1;1\right)\)  nên \(1=a\cdot\left(-1\right)=-a\to a=-1.\)  Vậy \(OA:y=-x.\)   Đường thẳng \(d:y=-\frac{m-2}{m-1}x+\frac{1}{m-1},\)  với \(m\ne1.\)  
Do đó \(d\perp OA\Leftrightarrow-\frac{m-2}{m-1}\cdot\left(-1\right)=-1\Leftrightarrow m-2=-\left(m-1\right)\Leftrightarrow m=\frac{3}{2}.\)

26 tháng 9 2015

a) Gọi ( x0 ; y0 ) là điểm cố địn mà hàm số luôn đi qua 

Thay x = x0 ; y = y0 ta có :

( m - 2 )x0 + ( m - 1 )y0 = 1 

=> mx0 - 2x0 + my0 - y0 = 1 

=> mx0 + my0 = 1 + y0 + 2x0 

=> m(x0 + y0 ) = 1 + y0 + 2x0 

Vì đẳng thức luôn đúng với moi m nên 

x0  + y0 = 0         

y0 + 2x0 + 1 = 0   

=> x0 + 1 = 0 => x0 = -1 => y 0 = 1 

Vậy (-1;1) là điểm có định mà hàm số luôn đi qua 

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.

$M\in (d), \forall m$

$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$

$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\) 

Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)

b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$

Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$

Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)

Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)

c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min

$\Leftrightarrow (m-2)^2+1$ min

Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$

25 tháng 8 2023

còn cách nào ngoài cách áp dụng công thức HTLG ko

 

8 tháng 12 2016

a/ Gọi điểm cố định đó là \(N\left(x_0;y_0\right)\) .

Vì (d) đi qua N nên : \(\left(m-2\right)x_0+\left(m-1\right)y_0-1=0\Leftrightarrow m\left(x_0+y_0\right)-\left(2x_0+y_0+1\right)=0\)

Để (d) luôn đi qua N với mọi m thì \(\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x_0=-1\\y_0=1\end{cases}\) . Vậy điểm cố định đó là N(-1;1)

 

 

8 tháng 12 2016

b/ Gọi \(A\left(\frac{1}{m-2};0\right)\)\(B\left(0;\frac{1}{m-1}\right)\) là hai điểm thuộc (d)

và A,B lần lượt nằm trên Ox và Oy

Khi đó \(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)

hay \(\frac{1}{h^2}=\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(m-2\right)^2}\)

Tới đây bạn tìm GTNN của \(\frac{1}{h^2}\) rồi suy ra GTLN của \(h\) nhé :)