Tính tổng S = \(2013+\dfrac{2013}{1+2}+....+\dfrac{2013}{1+2+3+...+2012}\)
Giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)
Vậy \(\left(P-S\right)^{2013}=0\)
\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)
mình ko chắc đúng nha !
Số số hạng của tử là :
(2013-1):1+1=2013(số hạng)
\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)
=2014
Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015
Ta có :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+..........+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+..........+\dfrac{1}{2013}\)
\(\Leftrightarrow S-P=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
\(1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2010}+\dfrac{1}{2012}\right)\)
\(\Rightarrow1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1005}+\dfrac{1}{1006}\right)\)
\(\Rightarrow\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow S=P\Rightarrow S-P=0\Rightarrow\left(S-P\right)^{2013}=1\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}=P\)
Vậy \(S=P\)
\(A=\dfrac{2013}{1}+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)
\(=\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+1\)
\(=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)
\(=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(P=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2014}=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow\dfrac{P}{A}=\dfrac{2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)}=\dfrac{2013}{2014}\)
Vậy \(\dfrac{P}{A}=\dfrac{2013}{2014}\)
Bài 1:
Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Dễ thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 2:
\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)