Tìm giá trị lớn nhất của biểu thức B= 15/ (3x-2)2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(x^2+3x+7\)
=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) (Với mọi x)
=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) (Với mọi x )
Dấu "='' xảy ra <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)
Vậy min B bằng 19/4 <=>x=-3/2
Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
a)ta có:/y-1/>=0 với mọi y
/y-1/+7>=7 với mọi y
dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1
vậy MIN của biểu thức là 7 tại y=1
\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Do \(x^2+3\ge3;\forall x\)
\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)
\(\Rightarrow B\le1+4=5\)
Vậy \(B_{max}=5\) khi \(x=0\)