a, Tính tổng sau bằng cách hợp lí: S= 2/2+ 2/6+ 2/12 + 2/20+ 2/30
giúp tôi với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
\(A=2+2^2+2^3+.....+2^{100}\)
\(2A=2.\left(2+2^2+2^3+.....+2^{100}\right)\)
\(2A=2^2+2^3+2^4+.........+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+....+2^{101}\right)-\left(2+2^2+2^3+....+2^{100}\right)\)
\(A=2^{101}-2\)
số số hạng là
\(\left(20-2\right):2+1=10\)số hạng
tổng là
\(A=\left(20+2\right).10:2=110\)
\(\Rightarrow A=110\)
Cách 1:
\(\(A=2+4+6+........+20\)\)
\(\(A=\left(2+18\right)+\left(4+16\right)+\left(6+14\right)+\left(8+12\right)+10+20\)\)
\(\(A=20+20+20+20+10+20\)\)
\(\(A=20\times5+10\)\)
\(\(A=100+10\)\)
\(\(A=110\)\)
_Minh ngụy_
Ta có:
A = \(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
= \(\frac{1}{1}-\frac{1}{11}\)
=\(\frac{10}{11}\)
a.SSH : ( 20 - 1 ) : 1 + 1 = 20
tổng : (20 + 1 ) x 20 :2 = 210
b . SSH : (21 - 1) :2 +1 = 11
tổng ; (21 + 1 ) x 11 : 2 = 121
c. SSH : ( 22 - 2 ) : 2 + 1 = 11
tổng : ( 22 + 2) x 11 : 2 = 132
a)Dãy trên có số số hạng là:
(51-1):2+1=26(số hạng)
Tổng trên là:
(51+1)x26:2=676.
b)Dãy trên có số số hạng là:
(52-2):2+1=26(số hạng)
Tổng trên là:
(52+2)x26:2=702.
c)Tổng trên là:
(100+2)x[(100-2):2+1]:2=2550.
Chúc em học tốt^^
1 + 3 + 5 + ... + 51
= ( 51 + 1 ) x 26 : 2 = 676
2 + 4 + 6 + ... + 52
= ( 52 + 2 ) x 26 : 2 = 702
2 + 4 + 6 + ... + 100
= ( 100 + 2 ) x 50 : 2 = 2550
S= 2/2+ 2/6+ 2/12 + 2/20+ 2/30
S = 1 + 10/30 + 5/30 + 3/30 +2/30
S = 1 + 2/3
S = 5/3
nha bạn chúc bạn học tốt nha
\(S=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}\)
\(S=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\)
\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(S=2\left(1-\frac{1}{6}\right)=2\cdot\frac{5}{6}=\frac{5}{3}\)