Cho tam giác ABC cân tại A. Các đường trung trực của cạnh AB: AC tại N:M (N:M nằm ngoài BC) .TRên tia đối tia AMlaays P sao cho AP=MB .C/m
a,tam giác AMC và tam giác ANO cân
b, AM=PC=AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ ( bạn tự vẽ hình nha! )
a,
Vì đường trung trực của AB cắt BC tại N
=> N Cách đều 2 đầu mút A và B của đoạn AB
=> AN = AB
=> Tam giác ANB cân
Vì đường trung trực của AC cắt BC tại M
=> M Cách đều 2 đầu mút A và C của đoạn AC
=> AM = AC
=> Tam giác AMC cân
Vậy: ....
b,
VÌ tam giác AMC cân tại M Và tam giác ABN cân tại N
=> \(\widehat{MAC}=\widehat{NAB}=\widehat{ABC}\)
\(\Rightarrow\widehat{MAB}=\widehat{CAN}\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có:
\(\widehat{MAB}=\widehat{CAN}\)( theo trên )
AB = AC ( vì tam giác ABC cân tại A )
\(\widehat{ABM}=\widehat{ACN}\)( vì kề bù với 2 góc bằng nhau )
=> \(\Delta AMB\)= \(\Delta ANC\)( g.c.g )
=> AM = AN ( 2 cạnh tương ứng ) ( 1 )
Vì \(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}\) ( \(\Delta ABC\)cân tại A và \(\Delta MAC\)cân tại M )
=> \(\widehat{ABM}=\widehat{EAC}\)( vì kề bù với 2 góc bằng nhau )
Xét \(\Delta ABM\)và \(\Delta CAE\)có :
AB = AC ( theo trên )
\(\widehat{ABM}=\widehat{EAC}\)( theo trên )
BM = AE ( GT )
=> \(\Delta ABM\)= \(\Delta CAE\)( c.g.c )
=> AM = EC ( 2 cạnh tương ứng ) ( 2 )
Từ (1) và (2); ta có: AM = EC = AN
Vậy:AM = EC = AN
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M
a) Xét ΔAMC và ΔDMB có
\(\widehat{ACM}=\widehat{DBM}\)(hai góc so le trong, AC//BD)
MC=MB(M là trung điểm của BC)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
Do đó: ΔAMC=ΔDMB(g-c-g)
b) Ta có: ΔAMC=ΔDMB(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AB=BD