Giải các bất phương trình sau :
\(\left|5-8x\right|\le11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây nhé : https://hoc247.net/hoi-dap/toan-8/giai-bat-phuong-trinh-2x-3-5-faq206164.html
Ta có: |2x-3|>5
=>2x-3>5 hoặc 2x-3<-5
=>x>4 hoặc x<-1
4: =>2x-3>5 hoặc 2x-3<-5
=>x>4 hoặc x<-1
5: =>-4<=2x-1<=4
=>-3/2<=x<=5/2
Bất phương trình tương đương với :
\(\begin{cases}x>1\\5x^2-8x+3>x^2\end{cases}\) hoặc 0<x<1 và \(5x^2-8x+3\)<\(x^2\)
Hệ thứ nhất cho nghiệm \(x>\frac{3}{2}\)
Hệ thứ hai cho nghiệm \(\frac{1}{2}\)<x<\(\frac{3}{5}\)
1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
2: \(\Leftrightarrow-4< =2x-1< =4\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
a) Ta có: \(\frac{3x-5}{2}\ge5x\)
\(\Leftrightarrow3x-5\ge10x\)
\(\Leftrightarrow3x-10x\ge5\)
\(\Leftrightarrow-7x\ge5\)
\(\Leftrightarrow x\le-\frac{5}{7}\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)
b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)
\(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)
\(\Leftrightarrow5x< 20\)
\(\Leftrightarrow x< 4\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)
a) (3x - 5)/2 >= 5x
<=> 3x - 5 >= 10x
<=> -5 >= 10x - 3x
<=> -5 >= 7x
<=> x =< -5/7
b) x(2 + x) - x^2 + 8x < 5x + 20
<=> 2x + x^2 - x^2 + 8x < 5x + 20
<=> 10x < 5x + 20
<=> 10x - 5x < 20
<=> 5x < 20
<=> x < 4
\(\left|5-8x\right|\le11\) \(\Leftrightarrow\left|8x-5\right|\le11\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}8x-5\ge0\Rightarrow x\ge\dfrac{5}{8}\\8x-5\le11\Rightarrow x\le2\end{matrix}\right.\\\left\{{}\begin{matrix}8x-5< 0\Rightarrow x< \dfrac{5}{8}\\-8x+5\le11\Rightarrow x\ge-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Kết luận
\(-\dfrac{3}{4}\le x\le2\)
bài này đơn giản nhưng mình thấy ấn tượng nhất chỗ này
bước đổi dấu trong trị tuyệt đối này đúng