K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

Số số hạng là: 

(100-1)/1+1=100(số)

Tổng của hàng đó là:

(1+100)*100/2=5050

HT

21 tháng 12 2015

mình đang xin cách giải chứ kết quả biết rồi

21 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

24 tháng 10 2016

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\left(đpcm\right)\)

  • 1 số bài toán tương tự:

CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)

Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)

 

8 tháng 8 2016

101/2

27 tháng 12 2018

thui khỏi nha , mik bt lm r

15 tháng 12 2017
E đag cần gấp ạ .Mn giúp e vs nha , e cảm ơn ạ
13 tháng 8 2018

ta có A = 1+(1+2)+....+(1+2+..+100) = 1 x 100 + 2 x 99 + ...+100 x 1

\(\Rightarrow\frac{A}{100.1+99.2+...+1.100}=\frac{100.1+99.2+..+1.100}{100.1+99.2+..+100.1}=1\)