Giúp mink với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân vật chính trong chuyện "Hai kiểu áo" là: viên quan và thợ may.
Viên quan: luôn tìm cách xu nịnh luồn lách để thăng tiến nhưng lại có thái độ khinh thường, bắt nạt những người dân đen nghèo khổ.
Thợ may: người nhìn thấu bộ mặt thối nát của quan lại
a/
\(\left(104,5-14,1+9,6\right)xx=25\)
\(\Rightarrow100xx=25\Rightarrow x=\dfrac{25}{100}=\dfrac{1}{4}\)
b/
\(T=\dfrac{\left(2011-2\right)x2010+2000}{2011x2010-2020}=\)
\(=\dfrac{2011x2010-4020+2000}{2011x2010-2020}=\dfrac{2011x2010-2020}{2011x2010-2020}=1\)
a: \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\widehat{BAC}=90^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=30^0\)
\(\left(\overrightarrow{CA};\overrightarrow{CB}\right)=\widehat{ACB}=30^0\)
Lấy M sao cho \(\overrightarrow{AB}=\overrightarrow{BM}\)
=>AB=BM và B nằm giữa A và M
=>B là trung điểm của AM
Ta có: \(\widehat{ABC}+\widehat{MBC}=180^0\)(hai góc kề bù)
=>\(\widehat{MBC}+60^0=180^0\)
=>\(\widehat{MBC}=120^0\)
\(\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\left(\overrightarrow{BM},\overrightarrow{BC}\right)=\widehat{MBC}=120^0\)
b: Vì ΔABC vuông tại A nên \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}\)
=>\(\dfrac{4}{BC}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(BC=\dfrac{8\sqrt{3}}{3}\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2=\left(\dfrac{8}{\sqrt{3}}\right)^2-4^2=\dfrac{16}{3}\)
=>\(AB=\dfrac{4\sqrt{3}}{3}\)
MB=BA
mà \(AB=\dfrac{4\sqrt{3}}{3}\)
nên \(MB=\dfrac{4\sqrt{3}}{3}\)
\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\overrightarrow{BM}\cdot\overrightarrow{BC}\)
\(=BM\cdot BC\cdot cos\left(\overrightarrow{BM},\overrightarrow{BC}\right)\)
\(=\dfrac{4\sqrt{3}}{3}\cdot\dfrac{8\sqrt{3}}{3}\cdot cos120=-\dfrac{16}{3}\)
c: \(\overrightarrow{AB}\left(\overrightarrow{BC}+\overrightarrow{BA}\right)\)
\(=\overrightarrow{AB}\cdot\overrightarrow{BC}+\overrightarrow{AB}\cdot\overrightarrow{BA}\)
\(=-\dfrac{16}{3}-AB^2=-\dfrac{16}{3}-\left(\dfrac{4}{\sqrt{3}}\right)^2=-\dfrac{32}{3}\)
a: \(\overrightarrow{a}=\left(2;-3\right);\overrightarrow{b}=\left(4;8\right);\overrightarrow{c}=\left(-7;3\right)\)
Tọa độ của \(\overrightarrow{a}+\overrightarrow{b}\) là:
\(\left\{{}\begin{matrix}x=2+4=6\\y=-3+8=5\end{matrix}\right.\)
Tọa độ của \(3\overrightarrow{a}-2\overrightarrow{b}+5\overrightarrow{c}\) là:
\(\left\{{}\begin{matrix}x=3\cdot2-2\cdot4+5\left(-7\right)=-37\\y=3\cdot\left(-3\right)-2\cdot8+5\cdot3=-10\end{matrix}\right.\)
b: \(\overrightarrow{2a}+\overrightarrow{u}-\overrightarrow{c}=\overrightarrow{0}\)
=>\(\overrightarrow{u}=-2\overrightarrow{a}+\overrightarrow{c}\)
Tọa độ của vecto u là:
\(\left\{{}\begin{matrix}x=-2\cdot2+\left(-7\right)=-11\\y=-2\cdot\left(-3\right)+3=6+3=9\end{matrix}\right.\)
c: Đặt \(\overrightarrow{c}=x\cdot\overrightarrow{a}+y\cdot\overrightarrow{b}\)
=>\(\left\{{}\begin{matrix}-7=2x+4y\\3=-3x+8y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+8y=-14\\-3x+8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=-17\\-3x+8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{17}{7}\\8y=3x+3=\dfrac{-51}{7}+3=-\dfrac{30}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{17}{7}\\y=-\dfrac{30}{7\cdot8}=-\dfrac{30}{56}=-\dfrac{15}{28}\end{matrix}\right.\)
Vậy: \(\overrightarrow{c}=-\dfrac{17}{7}\cdot\overrightarrow{a}+\dfrac{-15}{28}\cdot\overrightarrow{b}\)
d: \(\left|\overrightarrow{a}\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)
\(\overrightarrow{b}-\overrightarrow{c}=\left(11;5\right)\)
=>\(\left|\overrightarrow{b}-\overrightarrow{c}\right|=\sqrt{11^2+5^2}=\sqrt{146}\)
e: \(\overrightarrow{a}\cdot\overrightarrow{b}=2\cdot4+\left(-3\right)\cdot8=-24+8=-16\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(-2;-11\right);\overrightarrow{b}+\overrightarrow{c}=\left(-3;11\right)\)
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{b}+\overrightarrow{c}\right)=\left(-2\right)\cdot\left(-3\right)+\left(-11\right)\cdot11=-121+6=-115\)
f: \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}=\dfrac{-16}{\sqrt{2^2+\left(-3\right)^2}\cdot\sqrt{4^2+8^2}}\)
\(=\dfrac{-16}{\sqrt{13}\cdot4\sqrt{5}}=-\dfrac{4}{\sqrt{65}}\)
4:
=145(69+22+8+1)
=145*100=14500
3:
Xe 1 chở: (168+26):2=194:2=97 tạ
Xe 2 chở 97-26=71 tạ
\(\left(-\dfrac{7}{23}\right).\left(\dfrac{13}{28}\right)+\left(-\dfrac{7}{23}\right).\left(\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{13}{28}+\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{38}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{19}{14}\right)\)
\(=-\dfrac{19}{46}\)
\(\left(-\dfrac{7}{23}\right)\cdot\left(\dfrac{13}{28}\right)+\left(-\dfrac{7}{13}\right)\cdot\left(\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right)\cdot\left(\dfrac{13}{28}+\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{13}\right)\cdot\dfrac{38}{28}\)
\(=\left(-\dfrac{7}{13}\right)\cdot\dfrac{19}{14}\)
\(=-\dfrac{19}{26}\)
vẽ tia Ot // Ax
ta có : Â1 = Ô1 = 30 độ
vì Ax // Ot mà Ax // By nên Ot // By
=> Ô2+ góc B1 = 180 độ ( trong cùng phía bù nhau )
thay : Ô2 + 40 độ = 180độ
=> Ô2 = 120 độ
vì tia Ot nằm giữa Ax và By nên
góc AOB = Ô1 + Ô2
góc AOB = 30 độ + 120 độ
=> góc AOB = 150 độ