Tìm giá trị lớn nhất của x:
| 6 - 2x| - 2 |4 +x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |4 + x| > 0
=> 2|4 + x| > 0
=> | 6-2x | - 2 | 4+x | < |6 - 2x|
Dấu "=" xảy ra
<=> |4 + x| = 0
<=> 4 + x = 0
<=> x = -4
Khi đó giá trị của biểu thức là
|6 - 2(-4)| - 2.0
= |14| - 0
= 14 - 0
= 14
KL: GTLN của biểu thức = 14 khi x = -4
Áp dụng bất đẳng thức giá trị tuyệt đối: |a| - |b| \(\le\) |a + b| ta có:
|6 - 2x| - 2|4+x| = |6 - 2x| - |2(4+x)| = |6 - 2x| - |8 + 2x| \(\le\) |6 - 2x + 8 + 2x| = 14
Vậy GTLN của biểu thức bằng 14, chẳng hạn tại x = -4
Lời giải:
$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$
Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$
Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)