Tìm x
12000 : { 5 . [ 409 - ( 18 - x) ]+ 1000} =4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=500.{5.400+1000} :15
=500.{2000+1000}:15
=500.3000:15
=1500000:15
=100000
(22x - 18 ) + 4 = 1000 - 219
(22x - 18 ) + 4 = 781
(22x - 18 ) = 781 - 4
(22x - 18 ) = 777
22x - 18 = 777
22x = 777 + 18
22x = 795
=> x = 222
219 + ( 22x - 18 ) +4 = 1000
22x - 18 = 1000 - 219 - 4
22x - 18 = 777
22x = 777 + 18
22x = 795
x=\(\frac{795}{22}\)
Ta có: 5x+x+x+3 ≤ 1018 : 218
⇒53x+3 ≤ 518
⇒3x + 3 ≤ 18 ⇒ 3x+3 ≤ 15
⇒ x ≤ 5
Vậy x ϵ (0;1;2;3;4;5)
Chữ số tận cùng của:
\(2^{1000}=\overline{...6}\)
\(4^{161}=\overline{...4}\)
f: Ta có: \(x\left(2x-9\right)-4x+18=0\)
\(\Leftrightarrow\left(2x-9\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=2\end{matrix}\right.\)
g: Ta có: \(4x\left(x-1000\right)-x+1000=0\)
\(\Leftrightarrow\left(x-1000\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1000\\x=\dfrac{1}{4}\end{matrix}\right.\)
f. x(2x - 9) - 4x + 18 = 0
<=> x(2x - 9) - 2(2x - 9) = 0
<=> (x - 2)(2x - 9) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\2x-9=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=\dfrac{9}{2}\end{matrix}\right.\)
g. 4x(x - 1000) - x + 1000 = 0
<=> 4x(x - 1000) - (x - 1000) = 0
<=> (4x - 1)(x - 1000) = 0
<=> \(\left[{}\begin{matrix}4x-1=0\\x-1000=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=1000\end{matrix}\right.\)
h. 2x(x - 4) - 6x2(-x + 4) = 0
<=> 2x(x - 4) + 6x2(x - 4) = 0
<=> (2x + 6x2)(x - 4) = 0
<=> 2x(1 + 3x)(x - 4) = 0
<=> \(\left[{}\begin{matrix}2x=0\\1+3x=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\\x=4\end{matrix}\right.\)
i. 2x(x - 3) + x2 - 9 = 0
<=> 2x(x - 3) + (x - 3)(x + 3) = 0
<=> (2x + x + 3)(x - 3) = 0
<=> (3x + 3)(x + 3) = 0
<=> \(\left[{}\begin{matrix}3x+3=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
j. 9x - 6x2 + x3 = 0
<=> x(9 - 6x + x2) = 0
<=> x(3 - x)2 = 0
<=> \(\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)