Xét vị trí tương đối của các cặp đường thẳng d và d' cho bởi các phương trình sau :
a) \(d:\left\{{}\begin{matrix}x=-3+2t\\y=-2+3t\\z=6+4t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=5+t'\\y=-1-4t'\\z=20+t'\end{matrix}\right.\)
b) \(d:\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=3-t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1+2t'\\y=-1+2t'\\z=2-2t'\end{matrix}\right.\)
a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).
Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).
Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)
và = (19.8 + 2 - 11.4) = 0
nên d và d' cắt nhau.
Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.
Xét hệ phương trình:
Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.
b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .
Ta thấy và cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.
Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên d và d' song song.