chứng minh rằng : 5\(^{2003}\)+5\(^{2002}\)+5\(^{2001}\)chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giúp cho đáp án đúng 100%
5^2003+5^2002+5^2001 chia hết cho 31
=5^2001.(1+5+5^2)
=5^2001.31 chia hết cho 3
hai bài kia tương tự rất dễ đúng ko
Ta có: 52003 + 52002 + 52001
= 52001.(1 + 5 + 25)
= 52001 . 31 chia hết cho 31
Ta có: 1 + 7 + 72 + ...... + 7101
= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)
= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)
= 1.8 + 72.8 + ..... + 7100 . 8
= 8.(1 + 72 + ..... + 7100) chia hết cho 8
Ta có:
52003 + 52002 + 52001
= 52001.52 + 52001.5 + 52001
= 52001.(52 + 5 + 1)
= 52001.31
Vì 31 chia hết cho 31 => 52001.31 chia hết cho 31 => 52003 + 52002 + 52001 chia hết cho 31
a) 52003 + 52002 + 52001 chia hết cho 31
= 52001 . 52 + 52001 + 51 + 52001
= 52001 . ( 52 + 5 + 1 )
= 52001 . 31 chia hết cho 31
Bạn coi lại đề đi nhé , vì 439 + 440 + 441 không chia hết cho 28 nên mình không chứng minh được !
Nhưng nếu bạn nào thấy mình làm đúng phần a thì k cho mình nha !
A=52003+52002+52001 chia hết cho 31
A=52003+52002+52001=52001(52+5+1)=52001x31⋮31.
Ta có: 52003 + 52002 + 52001
= 52001.(52 + 5 + 1)
= 52001 . 31 chia hết cho 31
2/
A=1+2+2^2+...+2^10
2.A= 2+2^2+...+2^11
=>2A-A = 2^11-1=> A = 2^11 -1=B
Vậy A=B
1)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31
Vì 31 chia hết cho 31nên
52001.31chia hết cho 31 hay 52003+52002+52001 chia hết cho 31
2) A = 1+2+22+......+29+210
=>2A=2+22+23+...+211
=>2A-A=2+22+23+...+211-(1+2+22+...+29+210)
=>A=211-1
Vậy A=B=211-1