K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các phần còn lại cố làm nốt nhé!

a) 

Ta có:

+) ABCD là hình bình hành <=> AB // CD <=> \(\widehat{B_1}=\widehat{F_1}\)(Hai góc đồng vị) (*)

+) DE là tia phân giác của \(\widehat{D}\)

<=> \(\widehat{D_1}=\frac{1}{2}\widehat{D}\)

BF là tia phân giác của \(\widehat{B}\)

<=> \(\widehat{B_1}=\frac{1}{2}\widehat{B}\)

Ta có: \(\widehat{B}=\widehat{D}\)(Vì ABCD là hình bình hành)

<=> \(\widehat{B_1}=\widehat{D_1}\)(**)

Từ (*) và (**) <=> \(\widehat{D_1}=\widehat{F_1}\left(\widehat{B_1}\right)\)

Mà hai góc này tại vị trí đồng vị <=> DE // BF

b)

Xét tứ giác DEBF, ta có:

+) DE // BF

+) BE // DF (Vì AB // CD)

<=> DEBF là hình bình hành

B C D A F E 1 1 1

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(DE\), \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\))

Suy ra \(DEBF\) là hình bình hành

loading...  loading...  

4 tháng 7 2023

a) Ta thấy \(\widehat{AED}=\widehat{EDC}=\widehat{ADE}\) nên tam giác ADE cân tại A. Hoàn toàn tương tự thì tam giác CBF cân tại C. 

 Mặt khác, do tứ giác ABCD là hình bình hành nên \(\widehat{A}=\widehat{C},\widehat{B}=\widehat{D}\). Do đó \(\dfrac{\widehat{B}}{2}=\dfrac{\widehat{D}}{2}\) hay \(\widehat{CBF}=\widehat{ADE}\). Kết hợp với \(\widehat{A}=\widehat{C}\) thì suy ra \(\Delta ADE~\Delta CBF\left(g.g\right)\). Lại có \(\dfrac{AD}{CB}=1\) (do tứ giác ABCD là hình bình hành), suy ra \(\Delta ADE=\Delta CBF\) (2 tam giác đồng dạng có tỉ số đồng dạng bằng 1 thì 2 tam giác đó bằng nhau), ta có đpcm.

 b) Ta thấy \(\widehat{AED}=\widehat{ADE}=\widehat{CBF}=\widehat{ABF}\) nên DE//BF. Lại có BE//DF (do tứ giác ABCD là hình bình hành) nên tứ giác DEBF cũng là hình bình hành (các cặp cạnh đối song song).

4 tháng 7 2023

A B C D E F

a/

Xét tg ADE có

\(\widehat{ADE}=\widehat{CDE}\) (gt) (1)

\(\widehat{AED}=\widehat{CDE}\) (góc so le trong) (1)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}\) => tg ADE là tg cân tại A

=> AD=AE (3)

Xét tg CBF có

\(\widehat{CBF}=\widehat{ABF}\) (gt) (4)

\(\widehat{CFB}=\widehat{ABF}\) (góc so le trong) (5)

Từ (4) và (5) => \(\widehat{CBF}=\widehat{CFB}\)  => tg CBF cân tại C

=> CB=CF (6)

Ta có

AD=CB (cạnh đối hình bình hành) (7)

Từ (3) (6) (7) => AD=AE=CB=CF

Mà \(\widehat{DAE}=\widehat{BCF}\) (góc đối hình bình hành)

=> tg ADE = tg CBF (c.g.c)

=> tg ADE và tg CBF là những tg cân bằng nhau

b/

tg ADE = tg CBF (cmt) \(\Rightarrow\widehat{BFC}=\widehat{ADE}\)

Mà \(\widehat{EDC}=\widehat{ADE}\) (gt)

\(\Rightarrow\widehat{BFC}=\widehat{EDC}\)  Hai góc này ở vị trí đồng vị => DE//BF (8)

Ta có

AB//CD (cạnh đối hình bình hành) => BE//DF (9)

Từ (8) (9) => DEBF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau là hình bình hành)

 

 

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

2 tháng 11 2018

a) Ta có A E D ^ = E D C ^   v à   A B F ^ = E D C ^ ⇒ D E / / B F  (có góc ở vị trí đồng vị bằng nhau).

b) Từ câu a) suy ra DEBF là hình bình hành.

13 tháng 10 2018

Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có:

+ ABCD là hình bình hành ⇒ AB // CD ⇒ Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc đồng vị) (1)

+ DE là tia phân giác của góc D

Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc này ở vị trí đồng vị ⇒ DE // BF (đpcm)

b) Tứ giác DEBF có:

DE // BF (chứng minh ở câu a)

BE // DF (vì AB // CD)

⇒ DEBF là hình bình hành.

Ta có: \(\widehat{ADE}=\widehat{CDE}=\dfrac{\widehat{ADC}}{2}\)(DE là phân giác của góc ADC)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{\widehat{ABC}}{2}\)(BF là phân giác của góc ABC)

mà \(\widehat{ADC}=\widehat{ABC}\)(ABCD là hình bình hành)

nên \(\widehat{ADE}=\widehat{CDE}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có

\(\widehat{EAD}=\widehat{FCB}\)(ABCD là hình bình hành)
AD=CB

\(\widehat{ADE}=\widehat{CBF}\)(cmt)

Do đó: ΔADE=ΔCBF

=>AE=CF

Ta có: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên EB=FD

Ta có: AB//CD

E\(\in\)AB

F\(\in\)CD

Do đó: BE//DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

4 tháng 1

cảm ơn bạn

 

12 tháng 12 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành