cho tam giác ABC nhọn các đường cao AD ,BE,CF giao tại H
1)GÓC ABE=ACF
2)GÓC EBD=DAC
3) GÓCFCB=BAD
4)O là trung điểm của BC
cm BD=FO=EO=CO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
1) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(cạnh huyền-góc nhọn)
Suy ra: BE=CF(hai cạnh tương ứng)
Ta có: ΔABE=ΔACF(cmt)
nên \(\widehat{ABE}=\widehat{ACF}\)(hai góc tương ứng)
2) Ta có: ΔABE=ΔACF(cmt)
nên AE=AF(Hai cạnh tương ứng)
Ta có: AF+FB=AB(F nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AE=AF(cmt)
nên FB=EC
Ta có: \(\widehat{ABE}=\widehat{ACF}\)(cmt)
nên \(\widehat{FBI}=\widehat{ECI}\)
Xét ΔFBI vuông tại F và ΔECI vuông tại E có
FB=EC(cmt)
\(\widehat{FBI}=\widehat{ECI}\)(cmt)
Do đó: ΔFBI=ΔECI(cạnh góc vuông-góc nhọn kề)
Suy ra: IB=IC(hai cạnh tương ứng)
3) Xét ΔABI và ΔACI có
AB=AC(ΔABC cân tại A)
AI chung
IB=IC(cmt)
Do đó: ΔABI=ΔACI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
chúc bạn học tốt nha :>
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co
góc A chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC